1.小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用”不确定的书籍阅读”.勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
2.小学数学知识重点
希望对你有帮助,全都是自己打出来的哦小学数学?重点?其实很简单,只要上课听懂重点有三个一个是代数,第二个平面几何和立体几何,第三个是统计与一些杂题。
代数主要包括方程,还有一些数学的基础,例如什么质数合数什么的。特别是方程,要重点复习。
平面几何主要包括小学学的基础图形,还要记住基础概念,例如什么三角形具有稳定形,还要背公式,最总要的一点是灵活灵用。立体几何,这是小学的难点,建议多做题。
统计等,这些都很简单,可以简要看一看1、长方形的周长=(长+宽)*2 C=(a+b)*2 2、正方形的周长=边长*4 C=4a 3、长方形的面积=长*宽 S=ab 4、正方形的面积=边长*边长 S=a.a= a 5、三角形的面积=底*高÷2 S=ah÷2 6、平行四边形的面积=底*高 S=ah 7、梯形的面积=(上底+下底)*高÷2 S=(a+b)h÷2 8、直径=半径*2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率*直径=圆周率*半径*2 c=πd =2πr 10、圆的面积=圆周率*半径*半径 Ѕ=πr 11、长方体的表面积=(长*宽+长*高+宽*高)*2 12、长方体的体积 =长*宽*高 V =abh 13、正方体的表面积=棱长*棱长*6 S =6a 14、正方体的体积=棱长*棱长*棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长*高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积*高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积*高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体 1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 、正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:。
3.教师招考考试中,小学数学的专业知识怎样复习
一、重视基础,深入理解
在考前一个月,如果大家还对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。所以大家务必在最后完全吃透基础理论知识,深入地理解基本概念、公式、定理、图表的理解,掌握知识点,将数学知识进行分类,在自己的头脑中有一个完整的体系。
二、掌握方法,提高能力
利用最后一个月的时间来拓展解题方法,提高解题能力。把知识体系化、连贯化,并拓展做题方法及思路,熟悉考试出题方式。尤其是解综合性试题和应用题能力。大家要搞清有关知识的纵向、横向联系,形成一个有机的体系。同时,也要提高做题质量,每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。
三、选择题答题技巧
掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择题提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。其次,审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。再次,辨析选项,排误选正。最后,要正确标记和仔细核查。
(1)特值法。在选择题的选项中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(2)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。
(3)特殊法。当对某一选择题没有把握时,可以采用此方法。要注意寻找线索,如果其他选项大体相当,唯有某一个选项特别长或特别短,那它成为正确答案的可能性很大。
(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以创造更多的得分机会,特别是最后一个选择题。
4.小学数学知识点总结人教版
第一章 数和数的运算 一 概念 (一)整数1 整数的意义 自然数和0都是整数。
2 自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3*5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数 几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。相邻的两个自然数互质。
两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类 纯小数:整数部分是零的小数,叫做纯小数。
例如: 0.25 、0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、5.26 都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7 、25.3 、0.23 都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 …… 3.1415926 …… 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的。
5.急求:小学数学知识点
1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 1 每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数*因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长。
6.小学数学的所有知识点 要详细
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整。
7.小学数学主要掌握哪些重点知识
小学数学毕业总复习无论是对学生掌握数学知识的水平层次,还是对教师全面提高教学效益都有着举足轻重的意义和作用。
为切实抓好总复习工作,全面提高六年级教学质量,特拟订以下复习计划,供大家参考。一、复习目标:1、使学生比较系统的牢固的掌握有关整数、小数、分数、比和比例、简易方程等基础知识,具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活的进行计算,会解简易方程,养成检查和验算的习惯。
2、使学生巩固已获得的一些计量单位的大小的表象,牢固的掌握所学的单位间的进率,能够比较熟练的进行名数的简单改写。3、使学生牢固的掌握所学的几何形体的特征,能够比较熟练的计算一些几何形体的周长、面积和体积,巩固所学的画图、测量等技能。
4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。5、使学生牢固的掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活的运用所学知识独立的解答不复杂的应用题和生活中的一些简单的实际问题。
二、复习重点:⒈整、小、分数四则运算,混合运算和简算,解方程和解比例。⒉复合应用题、分数、百分数应用题。
⒊几何形体知识。⒋综合运用知识,解决实际问题。
三、复习难点:⒈使学生对所学基础知识┄概念、性质、法则、公式以及常见数量关系系统化,并能融会贯通。⒉灵活解答应用题的能力和方法。
⒊准确的进行计算。四、复习关键:掌握“双基”,并能灵活运用。
五、复习方法:⒈分阶段复习⑴系统复习,24课时左右。⑵专题复习,12课时左右。
⑶综合检测,查漏补缺,根据具体情况而定。⒉复习主要采用讲练结合,以练为主的方法进行。
六、复习时间安排:第一阶段——24课时左右⒈数和数的运算(6课时)这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。⑴、数的意义、数的读法和写法⑵、数的改写、数的大小比较⑶、数的整除、分数小数的基本性质⑷、四则运算的意义和法则⑸、运算定律和简便算法⑹、四则混合运算⒉代数的初步知识(3课时左右)本节重点内容应放在掌握简易方程及比和比例的 辨析。
⑴、用字母表示数⑵、简易方程⑶、比和比例⒊应用题(7课时左右)这节重点放在应用题的分析和解题技能的发展上,难点内容是分数应用题。⑴、简单应用题(1课时)⑵、复合应用题(2课时)⑶、列方程解应用题(2课时)⑷、用比例知识解应用题(2课时)⒋、量的计量(2课时左右)本节重点放在名数的改写和实际观念上。
⑴、长度、面积、体积、重量、时间单位⑵、名数的改写⒌、几何初步知识(5课时左右)本节重点放在对特征的辨析和对公式的应用上。⑴、平面图形的认识⑵、平面图形的周长和面积⑶、立体图形的认识⑷、立体图形的面积和体积⒍、简单的统计(2课时左右)本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
⑴、平均数⑵、统计表⑶、统计图 注:在复习第一阶段中,需要穿插4份综合练习。第二阶段:专题 复习训练(12课时左右)⒈ 四则混合运算、简算、解方程、解比例的强化训练。
⒉几何形体公式的实际综合应用。⒊各类应用题的训练。
⒋填空题和判断题的强化。第三阶段——根据具体情况而定。
综合练习和评讲,及时查漏补缺。七、复习中的注意点:1、注意启发,引导学生进行进行合理的整理和复习。
2、注重“双基”训练,夯实知识功底。3、以教材为本,扣紧大纲。
4、加强反馈,注意因材施教。5、力求作到上不封顶,下要保底。
八、总复习复习措施:1、在复习分块章节时,重视基础知识的复习,加强知识之间的联系,使学生在理解上进行记忆。比如:基础概念、法则、性质、公式这类。
在课堂上在系统复习中纠正学生的错误,同时防止学生机械的背诵;对于计量单位要求学生在记忆时,理顺关系。2、在复习基础知识的同时,紧抓学生的能力。
⑴、在四则混合运算方面,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用自习与课后辅导时间对学生进行多次的过关练习。
⑵、在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题内型的衍射性指导学生学习。⑶、应用题中着重训练学生的审题,分析数量关系,寻求合理的简便的方法,讲练结合,归纳总结,抓订正、抓落实。
3、在复习过程中注意启发,加强导优辅差。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。
而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。要做到突出尖子生,重视学困生,努力提高中等生。
4、在复习期间,引导学生主动自觉的复习,学习系统化的归纳整理,对于学生多采用鼓励的方法,调动学习的积极性。5、加强审题训练,提高解题能力。
在复习时,教师应切实加强学生认真读题,审题习惯的培养。让学生在读题时读清、读透。
6、在复习当中,对于学生的掌握情况要及时做到心中有数,认真与学生进行反馈交流。
8.小学所有人教版数学知识的重点总结
公式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形C 周长S 面积a 边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体V: 体积=棱长*棱长*棱长 V=a*a*a 3、长方形 C周长S面积a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5三角形 s面积a底h高 面积=底*高÷2 s=ah÷2 三角形高=面积*2÷底三角形高=面积*2÷底 三角形底=面积*2÷高 6平行四边形 s面积a底h高 面积=底*高 s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)*高÷2s=(a+b)*h÷2 8圆形 S面积C周长∏d=直径r=半径(1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或小数+差=大数)植树问题 1非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100%涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣 利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 长度单位换算 1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天,闰年2月29天 平年全年365天,闰年全年366天 1日=24小时1时=60分 1分=60秒1时=3600秒 小学数学几何形体周长面积体积计算公式 1、长方形的周长=(长+宽)*2C=(a+b)*2 2、正方形的周长=边长*4C=4a 3、长方形的面积=长*宽S=ab 4、正方形的面积=边长*边长S=a.a=a 5、三角形的面积=底*高÷2S=ah÷2 6、平行四边形的面积=底*高S=ah 7、梯形的面积=(上底+下底)*高÷2S=(a+b)h÷28、直径=半径*2d=2r半径=直径÷2r=d÷2 9、圆的周长=圆周率*直径=圆周率*半径*2c=πd=2πr 10、圆的面积=圆周率*半径*半径 定义定理公式 三角形的面积=底*高÷2。
公式S=a*h÷2正方形的面积=边长*边长公式S=a*a 长方形的面积=长*宽公式S=a*b 平行四边形的面积=底*高公式S=a*h 梯形的面积=(上底+下底)*高÷2公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高公式:V=abh 长方体(或正方体)的体积=底面积*高公式:V=abh 正方体的体积=棱长*棱长*棱长公式:V=aaa 圆的周长=直径*π公式:L=πd=2πr 圆的面积=半径*半径*π公式:S=πr2 圆柱的表(侧)。
9.小学数学的知识点都有哪些
小学数学学习概述 数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学.学习类型分析1.方式性分类 (1)接受学习与发现学习 定义:将学习的内容以定论的形式呈现给学习者的学习方式.模式:呈现材料—讲解分析—理解领会—反馈巩固 (2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式. 模式:呈现材料—假设尝试—认知整合—反馈巩固.2.知识性分类一 (1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固 (2)技能学习 定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程.过程:演示—模仿—练习—熟练—自动化 (3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动.提出问题—分析问题—解决问题—反思过程3.知识性分类二 (1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识.概念学习:同化与形成.利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式.(2)技能性(程序性)知识的学习 小学数学技能主要是运算技能. 运算技能的形成分为三个阶段:①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率.(3)问题解决(策略性知识)的学习 通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习.小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性 尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一 定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别.4.任务性分类 (1)记忆操作类学习 如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等.(2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题.(3)探索性的学习 如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等.小学生数学认知学习 一、小学生数学认知学习的基本特征1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”.2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力.3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构.4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程.要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理.二、小学生数学认知发展的基本规律1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养 一、数学能力概述1.能力概述 能力是指个体能胜任某种活动所具有的心理特征2.数学能力 数学能力是顺利完成数学活动所具备的,。