1.请问数字信号处理主要学什么
数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
数字信号处理课程主要研究用数字序列或符号序列表示信号,并用数字计算方法对这些序列进行处理,以便把这些信号变成符合某种需要的形式,例如对信号进行滤波处理、频谱分析、功率谱估计等。本课程重点讨论确定性数字信号的处理,在此基础上,对随机信号处理进行研究。其主要内容有:(1)离散傅里叶变换(DFT):DFT基本理论、基本方法、基本性质,利用循环卷积计算线性卷积方法。快速傅里叶变换(FFT)方法。运用FFT对信号进行谱分析,运用FFT计算线性卷积;(2)数字滤波器原理和设计方法:数字滤波器IIR和FIR类型滤波器基本网络结构,冲激不变法、双线性变换法数字滤波器设计方法,数字巴特沃斯(Butterworth)、切比雪夫(Chebyshev)及椭圆数字滤波器设计方法、步骤及特性。IIR数字滤波器频率变换方法技术,FIR窗函数方法设计滤波器,频率取样方法设计FIR类数字滤波器方法及其特性;(3)离散随机过程:离散随机过程的几个基本特性,功率谱基本性质和计算方法,随机信号通过线性系统;(4)有限长效应:有限长效应引起的误差的分类,不同方法表示负数时量化效应的不同影响。信号由于量化所引入的噪声情形,定点、浮点运算中有限长影响的情形,IIR滤波器、FFT中的数字量化效应情形;(5)功率谱估计:估计理论的几个基本概念,自相关、周期图、直接变换谱估计方法的分析、实现。现代谱估计的几个基本方法。
2.数字信号处理到底是学什么的
预备知识:积分变换与复变函数—信号与系统
怎么学:有目标(学到什么程度),多看课本(相关的书籍要看看,比较经典外籍书的大部分是电子出版社出版),多动手做练习加深对概念的理解,公式很多,重要的是公式的意义,一定要记牢,理解;多比较(和信号与系统,重点是模拟和数字比较):最后是实验和滤波器设计,多想想结果为什么是这样,这是最重要的(考试相比很简单)。
关于时域、频域、S域、Z域存在的意义与作用,笼统理解是为了描述输入输出与系统的关系,比如人的耳朵就是一个高级fourier分析仪,傅里叶变换是电子工程师的有力武器。
3.数字信号处理到底是学什么的
数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。
另外DSP也是digital signal processor的简称,即数字信号处理器 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 《数字信号处理》这门课介绍的是:将事物的运动变化转变为一串数字,并用计算的方法从中提取有用的信息,以满足我们实际应用的需求。
4.如何学好数字信号处理课程求答案
《数字信号处理》是相关专业本科生培养中,继《信号与系统》、《通信原理》、《数字逻辑》等课程之后的一门专业技术课。
数字信号处理的英文缩写是 DSP ,包括两重含义:数字信号处理技术( Digital Signal Processing )和数字信号处理器( Digital Signal Processor )。目前我们对本科生开设的数字信号处理课程大多侧重在处理技术方面,由于课时安排和其他一些原因,通常的特点是注重理论推导而忽略具体实现技术的介绍。
最后导致的结果就是学生在学习了数字信号处理课程之后并不能把所学的理论知识与实际的工程应用联系起来,表现在他们做毕业设计时即使是对学过的相关内容也无法用具体的手段来实现,或者由于无法与具体实际相挂钩理解而根本就忘记了。我相信,我们开设本课程的根本目的应该是让学生在熟练掌握数字信号处理的基本原理基础上,能结合工程实际学习更多的 DSP 实现技术及其在通信、无线电技术中的应用技能,这也是符合 DSP 本身的二重定义的,学生通过本课程的学习,将应该能从事数字信号处理方面的研究开发、产品维护等方面的技术工作。
其实很多学生在大学四年学习过后都有这种反思:到底我在大学学到了什么呢?难道就是一些理论知识吗?他们将如何面对竞争日益激烈的社会呢? 因此,大家在应用MATLAB学习并努力掌握数字信号处理的原理,基本理论的同时,应该始终意识到该课程在工程应用中的重要性,并在课后自学一些有关DSP技术及FPGA技术方面的知识。这样,学习本课程学习的三部曲是:一,学习数字信号处理的基本理论;二,掌握如何用 MATLAB 实现一些基本的算法,如 FFT , FIR 和 IIR 滤波器设计等;三,选择一种数字信号处理器作为实现平台进行实践学习,比如 TI 公司的 TMS320C54x 系列芯片,包括该处理器的硬件和软件系统,如Code Composer Studio及像MATLAB Link for Code Composer Studio这样的工具。
在学习数字信号处理的过程中,要注重培养自己的工程思维方法。数字信号处理的理论含有许多研究问题和解决问题的科学方法, 例如频率域的分析方法、傅里叶变换的离散做法、离散傅里叶变换的快速计算方法等, 这些方法很好。
虽然它们出现在信号处理的专业领域, 但是, 其基本精神是利用事物的特点和规律解决实际问题, 这在各个领域中是相同的。还有, 数字信号处理的理论的产生是有原因的, 这些原因并不难懂, 就是理论为应用服务, 提高使用效率。
例如: 为什么要使用频率域的分析方法?原因是从时间看问题, 往往看到事物的表面, 就像我们用眼睛看水只能看到水的颜色, 看不到水的基本成分, 同样, 从时间看信号只能看到信号变化的大小和快慢,看不到信号的基本成分; 若采用分解物质的方法, 从成分的角度去看, 用化学分析则能看到水的各种成分, 同样, 用分解信号的方法则能看到信号里的基本成分, 至于基本成分的选择则视哪种基本类型最适合实际信号处理, 这就是频率域的分析方法。 又如: 为什么要采用离散的傅里叶变换?原因很简单, 因为要利用计算机计算傅里叶变换, 而计算机只能计算数据, 不能计算连续变量, 所以必须分离连续的傅里叶变换, 使它成为离散的傅里叶变换。
再如: 为什么要采用离散傅里叶变换的快速计算方法?原因是, 理论上离散傅里叶变换能让计算机分析频谱, 但是, 直接按照离散傅里叶变换的定义计算它, 计算量太大, 实用价值不大; 只有采用巧妙的方法降低计算量, 则离散傅里叶变换才有实用价值,这种巧妙的方法就是离散傅里叶变换的快速计算方法。降低计算量的巧妙之处在, 离散傅里叶变换的计算量与信号的长度成正比, 科学家想办法将信号分解成为短信号, 分解成为短信号的方法有多种, 只要开动脑筋,我们也是一样可以想出来的。
最后,感谢同学们对我的支持,我会尽我所能,与大家共同探索”数字信号处理”领域的奇妙世界。
5.数字信号处理怎么复习,感觉好难
数字信号处理复习方法是理解掌握基本概念和基本方法,以复习要点为线索,结合教材内容,对知识进行作适当展开。
数字信号处理复习要点:
数字信号处理主要包括如下几个部分
1、离散时间信号与系统的基本理论,信号的频谱分析。
2、离散傅立叶变换,快速傅立叶变换。
3、数字滤波器的设计
一、离散时间信号与系统的基本理论、信号的频谱分析
1、离散时间信号:
1)离散时间信号,时间是离散变量的信号,即独立变量时间被量化了。信号的幅值可以是连续数值,也可以是离散数值。
2) 数字信号,时间和幅值都离散化的信号。
(本课程主要讲解的实际上是离散时间信号的处理)
3) 离散时间信号可用序列来描述。
4) 序列的卷积和(线性卷积)。
5)几种常用序列
a)单位抽样序列(也称单位冲激序列) 。
b)单位阶跃序列 。
c)矩形序列。
d)实指数序列。
6) 序列的周期性
所有 存在一个最小的正整数 ,满足: ,则称序列 是周期序列。(注意:按此定义,模拟信号是周期信号,采用后的离散信号未必是周期的)
7)时域抽样定理:一个限带模拟信号 ,若其频谱的最高频率为 ,对它进行等间隔抽样而得 ,抽样周期为T,或抽样频率 ;只有在抽样频率 时,才可由 准确恢复 。
2、离散时间信号的频域表示(信号的傅立叶变换)
周期性所有 存在一个最小的正整数 ,满足: ,则称序列 是周期序列 。(注意:按此定义,模拟信号是周期信号,采用后的离散信号未必是周期的)
7)时域抽样定理:一个限带模拟信号 ,若其频谱的最高频率为 ,对它进行等间隔抽样而得 ,抽样周期为T,或抽样频率为 ;只有在抽样频率 时,才可由 准确恢复 。
2、离散时间信号的频域表示(信号的傅立叶变换)
3、序列的Z变换
1) Z变换与傅立叶变换的关系,
2) Z变换的收敛域。收敛区域要依据序列的性质而定。同时,也只有Z变换的收敛区域确定之后,才能由Z变换唯一地确定序列。
3)有限长序列: ,
右序列: ,|Z|>Rx-
左序列: ,(|z|<Rx+,N2>0时:0≤|Z|< Rx+;N2≤0时: 0<|Z|< Rx+)
双边序列: ,常用序列的Z变换:x,C:收敛域内绕原点逆时针的一条闭合曲线。
1) 留数定理。
2) 留数辅助定理。
3) 利用部分分式展开: 然后利用定义域及常用序列的Z变换求解。
6.数字信号处理的内容简介
本书系统讲述了数字信号处理的基本原理和分析方法。全书内容包括离散时间信号与系统的时域分析、频域分析,离散傅里叶变换(DFT),快速傅里叶变换(FFT),数字滤波器的设计,数字滤波器的结构和多采样率数字信号处理。书中结合各章的重点,列举典型例题,并给出用MATLAB解决问题和求解计算或设计的程序及结果,以便于读者理解。
本书适合作为普通高等学校通信工程、电子科学与技术、电子信息工程、自动化、自动控制、检测技术与仪器以及其他相近专业的教材,还可以作为科技人员的参考书,亦可作为民办高校、自考等相关专业教材。