幻方是几年级的知识

1.介绍3级幻方的一些常识

三阶幻方是最简单的幻方,又叫九宫格,是由1,2,3,4,5,6,7,8,9九个数字组成的一个三行三列的矩阵(如右图示),其对角线、横行、纵向的

的和都为15,称这个最简单的幻方的幻和为15。中心数为5。

相传,大禹治水时,洛水中出现了一个“神龟”背上有美妙的图案,史称“洛书”,用现在的数字翻译出来,就是三阶幻方。

2500年前,孔子在他研究《易经》的著作《系词上传》中记载了:“河出图,洛出书,圣人则之。”最早将数字与洛书相连的记载是2300年前的《庄子·天运》,它认为:“天有六极五常,帝王顺之则治,逆之则凶。九洛之事,治成德备,监照下土,天下戴之,此谓上皇。”明代数学家程大位在《算法统宗》中也曾发出“数何肇?其肇自图、书乎?伏羲得之以画卦,大禹得之以序畴,列圣得之以开物”的感叹,大意是说,数起源于远古时代黄河出现的河图与洛水出现的洛书,伏羲依靠河图画出八卦,大禹按照洛书划分九州,并制定治理天下的九类大法,圣人们根据它们演绎出各种治国安邦的良策,对人类社会与自然界的认识也得到步步深化。大禹从洛书中数的相互制约,均衡统一得到启发而制定国家的法律体系,使得天下一统,归于大治,这是借鉴思维的开端。这种活化思维的方式已成为科学灵感的来源之一。从洛书发端的幻方在数千年后的今天更加生机盎然,被称为具有永恒魅力的数学问题。十三世纪,中国南宋数学家杨辉在世界上首先开展了对幻方的系统研究,欧洲十四世纪也开始了这方面的工作。著名数学家费尔玛、欧拉都进行过幻方研究,如今,幻方仍然是组合数学的研究课题之一,经过一代代数学家与数学爱好者的共同努力,幻方与它的变体所蕴含的各种神奇的科学性质正逐步得到揭示。目前,它已在组合分析、实验设计、图论、数论、群、对策论、纺织、工艺美术、程序设计、人工智能等领域得到广泛应用。1977年,4阶幻方还作为人类的特殊语言被美国旅行者1号、2号飞船携入太空,向广袤的宇宙中可能存在的外星人传达人类的文明信息与美好祝愿!

由1、2、3、……等连续自然数生成的幻方为基本幻方,在此基础上各数再加或减一个相同的数,可组成由零或负数组成的新幻方,新

由三阶基本幻方各数减1生成的新幻方

幻方的幻和也随之变化,不再与原幻方幻和同。

如上图基本幻方中各数减1生成的新幻方,幻和为12,如下图示:

想:1+9=10,2+8=10,3+7=10,4+6=10。这每对数的和再加上5都等于15,可确定中心格应填5,这四组数应分别填在横、竖和对角线的位置上。先填四个角,若填两对奇数,那么因三个奇数的和才可能得奇数,四边上的格里已不可再填奇数,不行。若四个角分别填一对偶数,一对奇数,也行不通。因此,判定四个角上必须填两对偶数。对角线上的数填好后,其余格里再填奇数就很容易了。

古代方式

南宋数学家杨辉概括的构造方法为:

“九子斜排。上下对易,

左右相更。四维突出。”

中国古代九宫格的填法口诀是:

九宫之义,法以灵龟,

二四为肩,六八为足,

左七右三,戴九履一,

五居中央。

也有把这两者综合起来说的:

九子斜排,上下对易,

左右相更,四维挺出,

戴九履一,左七右三,

二四为肩,六八为足

奇阶幻方通用构造法

口诀:

1 居上行正中央,

依次斜填切莫忘,

上出框界往下写,

右出框时左边放,

重复便在下格填,

出角重复一个样。

解释:

1)在第一行居中的方格内放1,依次向右上方填入2、3、4…;

2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;

3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;

4)如果右上方已有数字和出了对角线,则向下移一格继续填写。

5)也可将所填数在幻方中所对应的数填在幻方中对应的位置。

例如:1为第一行中间数,则将对应的9填在最后一行的中间。2以次类推。

按照这种方式,做镜像或旋转对称,可得到实际相同的其他填法:

只要将1放于四个变格的正中,向幻方外侧依次斜填其余数字;若出边,将数字调到另一侧;若目标格已有数字或出角,回一步填写数字,再继续按一开始的相同方向依次斜填其余数字。

2.数字幻方的有关知识

幻方 幻方又称为魔方,方阵或厅平方,它最早起源于我国。

宋代数学家杨辉称之为纵横图。 所谓纵横图,它是由1到n 2,这n 2个自然数按照一珲的规律排列成N行、N列的一个方阵。

它具有一种厅妙的性质,在各种几何形状的表上排列适当的数字,如果对这些数字进行简单的逻辑运算时,不论采取哪一条路线,最后得到的和或积都是完全相同的。关于幻方的起源,我国有“河图”和“洛书”之说。

相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上花于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”,了是最早的幻方伏羲氏赁借着“河图”而演绎出了八卦,后来大禹治洪水时,咯水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。“洛书”所画的衅中共有黑、白圆圈45个。

把这些连在一起的小圆和数目表示出来,得到九个。这九个数就可以组成一个纵横图,人们把由九个数3行3列的幻方称为3阶幻方,除此之外,还有4阶、5阶。

后来,人们经过研究,得出计算任意阶数幻方的各行、各列、各条对角线上所有数的和的公式为: Nn=1/2n(n 2+1) 其中n为幻方的阶数,所求的数为Nn. 幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。

我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。

在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。

3.7年级填幻方有什么规律

幻方是有公式的,但我只知道单阶幻方的做法

首先要在要求的幻方的四条边的外侧连接四个相同幻方

这种方法是从1开始依次把数填入幻方

1的位置是固定的 为第一行最中间的格

接下来就是将要填的数填在前一个数的右上方的格中

不明白的话就观察我所作的5阶幻方中11 12 13 14 15的位置

现在我要给你解释两种填补下去的情况

(1)当右上方的格子超出了本幻方 如 填完1之后 要填2的时候就会遇到这种情

况 此时照样把2填入 利用最初在周围造出的四个幻方确定其在幻方中的位置 在

将其填回本幻方中对应的位置 也就是说 1的右上方的格子是8上方的格子 想象

本幻方的上条边之上还有一个相同的幻方 则8上方的格子其实就是幻方最后一行

的与8同一列的那个格子 同理4 9 10 17 18 23 25都是这样填出来的

(2)当右上方的格子中已经填有数字 则将数字填入前一个数的下方 观察一下5

和6的位置就能明白 10和11 15和16 20和21都是这样填出来的

现在你可以试试了 从5阶入手吧 可以检验一下是否填对了

4.解幻方的方法,越详细越好,让五年级学生听得懂

/blog/static//

网址这个很容易懂

下面这个就要理解了

下面介绍一下奇数幻方,双偶,单偶幻方的常见规律。

一、N 为奇数时,最简单。

(1) 将1放在第一行中间一列;

(2) 从2开始直到n*n止各数依次按下列规则存放:

按 45°方向行走,如向右上

每一个数存放的行比前一个数的行数减1,列数加1

(3) 如果行列范围超出矩阵范围,则回绕。

例如1在第1行,则2应放在最下一行,列数同样加1;

(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,

则把下一个数放在上一个数的下面。

============================

二、N为4的倍数时

采用对称元素交换法。

首先把数1到n*n按从上至下,从左到右顺序填入矩阵

然后将方阵的所有4*4子方阵中的两对角线上位置的数关于方阵中心作对

称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变。

(或者将对角线不变,其它位置对称交换也可)

===========================

三、N 为其它偶数时

当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。

按上述奇数阶幻方给分解的4个子方阵对应赋值

上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)

即4个子方阵对应元素相差v,其中v=n*n/4

四个子矩阵由小到大排列方式为 ① ③

④ ②

然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),

a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换

其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。

5.什么是幻方

幻方又称为魔方,方阵或厅平方,它最早起源于我国。宋代数学家杨辉称之为纵横图。

所谓纵横图,它是由1到n 2,这n 2个自然数按照一珲的规律排列成N行、N列的一个方阵。它具有一种厅妙的性质,在各种几何形状的表上排列适当的数字,如果对这些数字进行简单的逻辑运算时,不论采取哪一条路线,最后得到的和或积都是完全相同的。关于幻方的起源,我国有“河图”和“洛书”之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上花于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”,了是最早的幻方伏羲氏赁借着“河图”而演绎出了八卦,后来大禹治洪水时,咯水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。“洛书”所画的衅中共有黑、白圆圈45个。把这些连在一起的小圆和数目表示出来,得到九个。这九个数就可以组成一个纵横图,人们把由九个数3行3列的幻方称为3阶幻方,除此之外,还有4阶、5阶。

后来,人们经过研究,得出计算任意阶数幻方的各行、各列、各条对角线上所有数的和的公式为:

Nn=1/2n(n 2+1)

其中n为幻方的阶数,所求的数为Nn.

幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。

我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。

6.填幻方的规律是什么

幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。

数学上已经证明,对于n>2,n阶幻方都存在。目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。

1、奇数阶幻方

n为奇数 (n=3,5,7,9,11……) (n=2*k+1,k=1,2,3,4,5……)

奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。填写方法是这样:

把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n*n-1个数:

(1)每一个数放在前一个数的右上一格;

(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;

(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;

(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;

(5)如果这个数所要放的格已经有数填入,处理方法同(4)。

这种写法总是先向“右上”的方向,象是在爬楼梯。

2、双偶阶幻方

n为偶数,且能被4整除 (n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)

先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即 n*n+1,称为互补。

先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:

这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。

这里,n*n+1 = 4*4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。

对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4*4把它划分成k*k个方阵。因为n是4的倍数,一定能用4*4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。

3、单偶阶幻方

n为偶数,且不能被4整除 (n=6,10,14,18,22……) (n=4k+2,k=1,2,3,4,5……)

这是三种里面最复杂的幻方。

以n=10为例。这时,k=2

(1) 把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用楼梯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。

(2) 在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数,互换位置。

(3) 在B象限任一行的中间格,自右向左,标出k-1列。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换),将B象限标出的这些数,和D象限相对位置上的数进行交换,就形成幻方。

看起来很麻烦,其实掌握了方法就很简单了。

%title插图%num