1.数学科普知识是什么啊
《数学史选讲》读后感
数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。
《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。
而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!”便连其正文都没看就把论文扔到了书堆里,尽管当时柏林大学已经认识到他的才华并任命他为数学教授,但阿贝尔早已在病魔侵袭的凄凉中与世长辞了。
尽管如今他们的理论得到世人的称赞,但在当初他们却受尽嘲笑与唾骂,他们不像当时就闻名于世的数学家那样,一有新的理论产生便受到全世界的重视,然后在钦佩与荣耀的光芒下继续他们的研究。虽然如此,他们仍旧坚定不移地相信自己,为自己的数学事业独立奋斗,深入探索,进一步发展和完善自己的理论。就如康托尔那番充满信心的话语:“我的理论坚如磐石,任何想要动摇它的人都将搬起石头砸自己的脚。”这种自信与坚定无不让人敬佩。
而许多的数学家都有一个共同点,就是他们的知识层面除了数学以外,还有其他的多个领域。譬如,泰勒斯是古希腊最早的数学家、哲学家,他几乎涉猎了当时人类的全部思想和活动领域;费马有丰富的法律知识,精通多门语言;莱布尼茨学习了拉丁文、希腊文、修辞学、算术、逻辑、音乐,还广泛阅读并研究了大量哲学和科学著作;在欧拉的工作中,数学紧密地和其他科学的应用、各种技术应用以及公众的生活联系在一起,它常常为解决力学、天文学、物理学、航海学、地理学、大地测量学、流体力学、弹道学、保险业和人口统计学等问题提供数学方法。由此可见,想要获得在一个学科的研究的成功,不仅需要精通该学科的知识,还需要学习其他学科、领域的知识,综合运用,才能更好地让这些知识为自己的研究服务。
自信、坚定、还有多领域的知识固然重要,但老师对他们的帮助也不可多得。牛顿在巴罗教授的课程中得到研究流数的灵感,欧拉继承微积分权威约翰·伯努利的衣钵成为“分析的化身”,阿贝尔在老师霍尔姆伯的鼓励与指导下
2.关于数学的小知识
1,零
在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。
2,数字系统
数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。
3,π
π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。
π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。
4,代数
代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。
但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。
5,函数
莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。
3.有关数学的小知识
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用”不确定的书籍阅读”.勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
4.数学知识是什么
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。”欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186—-1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
5.关于数学的所有知识
“O”的自述 人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。
可你们知道吗?我也有许多实实在在的意义。 1.我表示“没有”。
在数物体时,如果没有任何物体可数,就要用我来表示。 2.我有占数位的作用。
记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。
3.我表示起点。直尺、秤的起点都是用我来表示的。
4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。
5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。
如:7.00、7.0、7的精确度是不同的。 6.我不能做除数。
让我做除数可就麻烦了,因为我做除数是没有意义的。 以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。
为什么电子计算机要用二进位制 由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。
究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢? 这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。
计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。
由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。
那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。 二进位制所需要的记数的基本符号只要两个,即0和1。
可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。
用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。 二进位制在计算机内部使用是再自然不过的。
但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为11000011010100000。
为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。
例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。
十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。
二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。
可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。
譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。
时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。
譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。
这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。
这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。长度单位的自述 一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”
首先从会场中央站起来一个说道:“我叫‘引’,是。
6.有关数学的小知识
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用”+”号。
“+”号是由拉丁文”et”(”和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文”più”(加的意思)的第一个字母表示加,草为”μ”最后都变成了”+”号。
“-“号是从拉丁文”minus”(”减”的意思)演变来的,简写m,再省略掉字母,就成了”-“了。
到了十五世纪,德国数学家魏德美正式确定:”+”用作加号,”-“用作减号。
乘号曾经用过十几种,现在通用两种。一个是”*”,最早是英国数学家奥屈特1631年提出的;一个是”· “,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:”*”号象拉丁字母”X”,加以反对,而赞成用”· “号。他自己还提出用”п”表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把”*”作为乘号。他认为”*”是”+”斜起来写,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用”:”表示除或比,另外有人用”-“(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将”÷”作为除号。
十六世纪法国数学家维叶特用”=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号”=”就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了”=”号,他还在几何学中用”∽”表示相似,用”≌”表示全等。
大于号”〉”和小于号”〈”,是1631年英国著名代数学家赫锐奥特创用。至于≯””≮”、”≠”这三个符号的出现,是很晚很晚的事了。大括号”{ }”和中括号”[ ]”是代数创始人之一魏治德创造的。
数学的起源和早期发展:
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.
7.初中数学知识点总结
代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)
几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。
1、实数的分类
有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:-3,,0.231,0.737373。
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001。(两个1之间依次多1个0)。
实数:有理数和无理数统称为实数。
2、无理数
在理解无理数时,要抓住”无限不循环”这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001。等;
(4)某些三角函数,如sin60o等。
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:”神似”或”形似”都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(”三要素”)。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0,a=-b,反之亦成立。
即:(1)实数的相反数是。
(2)和互为相反数。
扩展资料:
科学记数法
把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。
(1)确定:是只有一位整数数位的数。
(2)确定n:当原数≥1时,等于原数的整数位数减1;;当原数<1时,是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。
例如:-40700=-4.07*105,0.000043=4.3*10ˉ5。
(3)近似值的精确度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位
(4)按精确度或有效数字取近似值,一定要与科学计数法有机结合起来。
8.基本科学知识的内容有哪些
包括太空探索、生物观园、科学历史、地球故事、奇人奇事、生命科学、科技生活、相关下载、UFO、军事科技、科幻世界、数码家电、健康饮食 、科普学术等知识。科学知识是对客观世界的如实反映。
科学,指的就是分科而学,后指将各种知识通过细化分类(如数学、物理、化学等)研究,形成逐渐完整的知识体系。它是关于探索自然规律的学问,是人类探索研究感悟宇宙万物变化规律的知识体系的总称。
扩展资料
科学特征
1、对象化:具体情况具体分析,以问题为导向,并以对象化之物(即所取)为研究对象,再 依据定量化寻求物量间的规律,由此建 构理论体系。
2、开放、真实可查证、理性客观、中立、无边界:从事科学研究不以“神”、“鬼”、“仙佛”、“上帝”为前提(一些科学家仍会信仰宗教,”科学”本身是理性思维的结果。),
重事实讲道理,一切以客观事实的观察为基础,探寻现象背后的原因,揭示现象发生或变化的内在规律, 通过证据,依据理性和逻辑推导出结论,通常科学家会设计实验并控制各种变因来保证实验的准确性及解释理论的能力。
3、实践性、普遍必然性、离言性与语言描述辩证统一:科学理论来自于实践,也必须回到实践,它必须能够解释其适用范围内的已知的所有事实,通过实验检验。
4、存在一个适用范围:也就是说可以不是放之四海皆准的绝对真理。例如:广义相对论在微观世界失效,量子理论在宏观世界失效。不过科学家们仍然努力寻找与探索是否有某种理论可以囊括所有自然现象(至少在物理界,将相对论与量子力学合并是一至少延续数十年的野心。)。
5、独立思考和判断,不迷信书和权威:独立思考、独立判断。不迷信书、权势巨头是寻求真理所需的品格。
6、可错性、可证伪:这是来自卡尔·波普尔的观点,人类其实无法知道一门学问里的理论是否一定正确,若这门学问有部份错误时,人们可以严谨明确的证明这部分的错误,的确是错的,那这门学问就算是合乎科学的学问。
7、临时性,不确定性:科学的核心是不确定性,解释一个现象的科学学说是临时的,需要越来越多的证据,所以永远是统计性质的,只有起点,没有终点。
参考资料来源:百度百科-科学
参考资料来源:百度百科-科学知识