1.生活中的数学知识
在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
2.【生活中有哪些数学知识,请列举,字要多一点】
在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏.如“树上七个猴,地上一个猴,一共几个猴.”等等生活中的例子.这些游戏构成了我们生活中五彩缤纷的画卷.我们每天早上一起来,首先是对一天的事情进行一下比较简单的计划,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学.一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字.我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关.可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具.无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法.特别是随着计算机的普及与发展,这种需要更是与日俱增.无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持.而且,数学是和语言一样的一种工具,具有国际通用性.可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面.这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用.因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影.在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结.一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等.总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件.因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它.。
3.五条生活中的数学知识
在人们的日常生活中,数学无处不在,正确运用数学知识可以使生活得到改善。
数学虽然是我们人类的大功臣,可如果我们人类不会使用它,它仍然”无利于世”,所以,我们一定要用聪明的大脑,利用数学,使我们的生活更方便. 神奇的数学其实就在我们身边,让我们一起从身边的每一件小事做起,你一定会发现这神奇的数学无时无刻都在影响着我们,帮助着我们. 数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。
此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。 数学在社会学中的应用也非常广泛,在统计学中更是如此。
它甚至可以用来避免疫病流行或减轻它们的影响力。当我们无法对全部人口采取免疫措施时,数学可以帮助我们确定哪些人必须注射疫苗以减少风险。
在艺术领域,数学仍然无处不在。音乐、绘画、雕塑……所有门类的艺术都通过这样或那样的方式得到数学的帮助。
日本雕塑家潮惠三喜欢用几何和拓扑学来创造自己的作品,通过数学计算分割雕塑用的花岗岩。潮惠三说:“数学是宇宙语言。”
“数学是我们这个时代看不见的文化”,它在众多领域不同程度地影响着我们的生活方式和工作方式。当然,普通人和科学家是从不同的角度和不同的层面认识数学,普通人一般只了解数学与生活某一方面的联系,而体会不到它与生活各个方面的关联。
人们总是认为数学比较抽象,对实际工作没有直接的帮助,没有必要去深入地学习和研究数学。其实不然,数学与其它科学一样,与我们的生活息息相关。
著名的数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”这是睿智的科学家对数学与生活关系的精彩描述。
当代数学已经远不止是算术和几何,而是一门丰富多彩的学科,是计算和演绎的创造性的结合,扎根于数据而展现于抽象形式中,通过揭示现象中隐蔽的模式来帮助人们了解和认识周围的世界。它所处理的是科学中的数据、测量和观察的资料,是推断、演绎和证明,是自然现象、人类行为和社会系统的数学模型,是数、机会、形状、算法和变化。
下面举个例子,让大家体会一下数学在实际生活中的运用。 例:在第二次世界大战期间,军事上、生产上、交通运输上都面临一系列的难题:飞机应当怎样侦察潜水艇的活动,有限的兵力应当怎样部署,生产应当怎样组织得更合理等等。
在二战中期,希特勒统治的纳粹德国非常猖獗,潜艇活动频繁。根据一些数学家的建议,一个用飞机进行系统巡逻的计划被采纳了。
按照这个计划,可以用尽可能少量的飞机来控制一定范围的水域。在这个计划实施以后,德国潜艇被侦察到的可能性大大增加。
1943年2月,美国军方获悉一支日本舰队集结在南太平洋的新不列颠岛,打算越过俾斯麦海开往新几内亚。美国西南太平洋空军奉命拦截,并炸沉这支日本舰队。
从新不列颠岛到新几内亚的航线有南北两条,航程都是三天。美军得到的气象预报表明,未来三天在北路航线上阴雨连绵,而南路天气比较好。
在这种情况下,日本舰队将走北路呢,还是南路?这是美军必须进行分析和判断的。因为要完成轰炸任务,首先要派出少量飞机进行侦察搜索,要求尽快地发现日本舰队,然后出动大批飞机进行轰炸。
空军司令考虑了出动少数飞机分两路进行搜索的战略,共有以下几种: 第一,搜索重点放在北路,日舰也走北路。这时虽然天气很差,能见度很低,但是因为搜索力量集中,可望在一天内发现日舰,于是就有两天的轰炸时间。
第二,索重点放在北路,可是日舰走的是南路。这时南路虽然天气比较好,但是因为搜索力量集中于北路,南路只有很少的飞机,因此也需要花上一天的时间才能发现日舰。
于是轰炸的时间也就只有两天。 第三,搜索重点放在南路,日舰却走北路。
这时北路只有为数极少的飞机,天气又很坏,得花上两天时间才能发现日舰,轰炸时间只剩下一天。 第四,搜索重点放在南路,日舰也走南路。
这时搜索的飞机比较多,天气又好,可以指望很快就能发现日舰,轰炸时间基本上有三天 站在美国人的立场,当然是第四种情况最有利。可是,打仗不能“一厢情愿”。
站在日本人的立场,当然走北路要有利得多。所以第二种和第四种情形可能出现的机会很小。
因此,空军司令毅然决定,把搜索重点放在北路。结果不出所料,日本人果然选择了这条航线,海战基本上就在美方预期的地点发生了,结果日方遭到了惨败。
有人说:数学是科学的皇后。我认为,数学的地位与哲学非常相似。
古往今来,历代哲学家都很重视数学,伟大的哲学家柏拉图曾在自己家的门口写下了一句话:“不懂数学者免进”。由此可见数学在哲学家心中的位置有多么重要。
数学与哲学一样,既来源于生活又为生活服务,表面看似抽象,。
4.生活中的数学知识
动物数学气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。
当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。
所以长期的准确预测天气是不可能的。 参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。
组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。
更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
(生活时报) 回答者: 永远的惟一 – 魔法学徒 一级 2006-4-12 20:55动物数学 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。
Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。
在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。
而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。
蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。
“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。
珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。
天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)。