1.离散数学包括哪些知识
离散数学是数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数无穷个元素;因此它充分描述了计算机科学离散性的特点。内容包含:数理逻辑、集合论、代数结构、图论、组合学、数论等。
《离散数学》课程简介离散数学是计算机专业的一门重要基础课。它所研究的对象是离散数量关系和离散结构数学结构模型。由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。
2.【求离散数学(第四版)知识框架如题可以转可贴内容好的加分谢谢帮
离散数学期末复习要点与重点 第1章 集合及其运算 复习要点 1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法. 注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分. 掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,?与?(?),空集?与所有集合等的关系.空集?,是惟一的,它是任何集合的子集.集合A的幂集P(A)=, A的所有子集构成的集合.若?A?=n,则?P(A)?=2n.2.熟练掌握集合A和B的并A?B,交A?B,补集~A(~A补集总相对于一个全集).差集A-B,对称差?,A?B=(A-B)?(B-A),或A?B=(A?B)-(A?B)等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明.证明方法有二:(1)要证明A=B,只需证明A?B,又A?B;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明. 第2章 关系与函数 复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算. 有序对就是有顺序二元组,如,x, y的位置是确定的,不能随意放置. 注意:有序对?,以a, b为元素的集合{a, b}={b, a};有序对(a, a)有意义,而集合{a, a}是单元素集合,应记作{a}. 集合A,B的笛卡儿积A*B是一个集合,规定A*B={?x?A,y?B},是有序对的集合.笛卡儿积也可以多个集合合成,A1*A2*…*An. 2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法. 二元关系是一个有序对集合,记作xRy. 关系的表示方法有三种:集合表示法, 关系矩阵:R?A*B,R的矩阵. 关系图:R是集合上的二元关系,若?R,由结点ai画有向弧到bj构成的图形.空关系?是唯一、是任何关系的子集的关系;全关系;恒等关系,恒等关系的矩阵MI是单位矩阵.关系的集合运算有并、交、补、差和对称差.复合关系;复合关系矩阵:(按布尔运算); 有结合律:(R·S)·T=R·(S·T),一般不可交换.逆关系;逆关系矩阵满足:;复合关系与逆关系存在:(R·S)-1=S-1·R-1. 3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R是自反的?IA?R;②R是反自反的?IA?R=?;③R是对称的 ?R=R-1;④R是反对称的?R?R-1?IA;⑤R是传递的?R·R?R. (2)IA具有自反性,对称性、反对称性和传递性.EA具有自反性,对称性和传递性.故IA,EA是等价关系.?具有反自反性、对称性、反对称性和传递性.IA也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界. 等价关系和偏序关系是具有不同性质的两个关系. 知道等价关系图的特点和等价类定义,会求等价类. 一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法. 设f是集合A到B的二元关系,”a?A,存在惟一b?B,使得?f,且Dom(f)=A,f是一个函数(映射).函数是一种特殊的关系.集合A*B的任何子集都是关系,但不一定是函数.函数要求对于定义域A中每一个元素a,B中有且仅有一个元素与a对应,而关系没有这个限制. 二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同. 函数有:单射——若;满射——f(A)=B或使得y=f(x);双射——单射且满射. 复合函数 即.复合成立的条件是:.一般,但.反函数——若f:A?B是双射,则有反函数f-1:B?A, , 重点:关系概念与其性质,等价关系和偏序关系,函数. 第3章 图的基本概念 复习要点 1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理. 图是一个有序对,V是结点集,E是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v(?V)关联的边数为结点度数(v);在有向图中,以v(?V)为终点的边的条数为入度-(v),以v(?V)为起点的边的条数为出度+(v),deg(v)=deg+(v) +deg-(v).无向完全图Kn以其边数;有向完全图以其边数.了解子图、真子图、补图和生成子图的概念.生成子图——设图G=,若E?E,则图是的生成子图. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不。
3.离散数学包括哪些知识
离散数学是数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数无穷个元素;因此它充分描述了计算机科学离散性的特点。
内容包含:数理逻辑、集合论、代数结构、图论、组合学、数论等。
《离散数学》课程简介
离散数学是计算机专业的一门重要基础课。它所研究的对象是离散数量关系和离散结构数学结构模型。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系, 因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。
4.离散数学知识点
原发布者:hoyist
离散数学笔记第一章命题逻辑合取析取定义1.1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义1.1.4条件联结词,表示“如果……那么……”形式的语句定义1.1.5双条件联结词,表示“当且仅当”形式的语句定义1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原子公式。(2)若某个字符串A是合式公式,则A、(A)也是合式公式。(3)若A、B是合式公式,则AB、AB、AB、AB是合式公式。(4)有限次使用(2)~(3)形成的字符串均为合式公式。1.3等值式1.4析取范式与合取范式将一个普通公式转换为范式的基本步骤1.6推理定义1.6.1设A与C是两个命题公式,若A→C为永真式、重言式,则称C是A的有效结论,或称A可以逻辑推出C,记为A=>C。(用等值演算或真值表)第二章谓词逻辑2.1、基本概念∀:全称量词∃:存在量词一般情况下,如果个体变元的取值范围不做任何限制即为全总个体域时,带“全称量词”的谓词公式形如”∀x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如∃x(H(x)∨WL(x)),即量词的后面为合取式例题R(x)表示对象x是兔子,T(x)表示对象x是乌龟,H(x,y)表示x比y跑得快,L(x,y)表示x与y一样快,则兔子比乌龟跑得快表示为:∀x∀y(R(x)∧T(y)→H(x,y))有的兔子比所有的乌龟跑得快表示为:∃x∀y(R(x)∧T(y)→H(x,y))2.2、谓词公式及其解释定义2.2.1、非逻辑符号:个体常元(如a
5.离散数学原理
离散数学简介
离散数学是现代数学的一个重要分支,也是计算机科学与技术的理论基础。离散数学是计算机专业课程的基础,是数据结构、编译原理、程序设计语言、数据库原理、操作系统、人工智能、算法分析与设计等课程必不可少的前行课程。通过对离散数学的学习,不仅使学生掌握进一步学习其他课程所必需的离散量的结构及其相互关系的数学知识,同时还培养了学生的抽象思维能力和严密的逻辑推理能力,另外还增强了学生使用学过的离散数学知识进行分析和解决问题的能力。
离散数学包括数理逻辑、集合论、代数结构、图论、形式语言、自动机和计算几何等。本课程主要介绍其中的数理逻辑和集合论部分。
数理逻辑是研究推理逻辑规则的一个数学分支,它采用数学符号化的方法,给出推理规则来建立推理体系。进而讨论推理体系的一致性、可靠性和完备(全)性等。数理逻辑的研究内容是两个演算加四论,具体为命题演算、谓词演算、集合论、模型论、递归论和证明论。数理逻辑是形式逻辑与数学相结合的产物。但数理逻辑研究的是各学科(包括数学)共同遵从的一般性的逻辑规律,而各门学科只研究自身的具体规律。
集合论可看作数理逻辑的一个分支,也是现代数学的一个独立分支,它是各个数学分支的共同语言和基础。集合论是关于无穷集和超穷集的数学理论。古代数学家就已接触到无穷概念,但对无穷的本质缺乏认识。为微积分寻求严密的基础促使实数集结构的研究,早期的工作都与数集或函数集相关联。集合论已在计算机科学、人工智能学科、逻辑学、经济学、语言学和心理学等方面起着重要的应用。
6.学习离散数学
学习离散数学有两项最基本的任务:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培训自学能力、抽象思维能力和逻辑推理能力,以提高专业理论水平。
因此学习离散数学对于计算机、通信等专业后续课程的学习和今后从事计算机科学等工作是至关重要的。但是由于离散数学的离散性、知识的分散性和处理问题的特殊性,使部分学生在刚刚接触离散数学时,对其中的一些概念和处理问题的方法往往感到困惑,特别是在做证明题时感到无从下手,找不到正确的解题思路。
因此,对离散数学的学习方法给予适当的指导和对学习过程中遇到的一些问题分析是十分必要的。一、认知离散数学离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。
它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。
1.定义和定理多离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。
在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。
掌握和理解这些概念对于学好离散数学是至关重要的。2. 方法性强在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的。
如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。反之,则事倍功半。
在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。
在平时的讲课和复习中,老师会总结各类解题思路和方法。作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。
3. 抽象性强离散数学的特点是知识点集中,对抽象思维能力的要求较高。由于这些定义的抽象性,使初学者往往不能在脑海中直接建立起它们与现实世界中客观事物的联系。
不管是哪本离散数学教材,都会在每一章中首先列出若干个定义和定理,接着就是这些定义和定理的直接应用,如果没有较好的抽象思维能力,学习离散数学确实具有一定的困难。因此,在离散数学的学习中,要注重抽象思维能力、逻辑推理能力的培养和训练,这种能力的培养对今后从事各种工作都是极其重要的。
在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。
所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。4. 内在联系性离散数学的三大体系虽然来自于不同的学科,但是这三大体系前后贯通,形成一个有机的整体。
通过认真的分析可寻找出三大部分之间知识的内在联系性和规律性。如:集合论、函数、关系和图论,其解题思路和证明方法均有相同或相似之处。
二、认知解题规范一般来说,离散数学的考试要求分为:了解、理解和掌握。了解是能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。
为了考核学生对这三部分的理解和掌握的程度,试题类型一般可分为:判断题、填空题、选择题、计算题和证明题。判断题、填空题、选择题主要涉及基本概念、基本理论、重要性质和结论、公式及其简单计算;计算题主要考核学生的基本运用技能和速度,要求写出完整的计算过程和步骤;证明题主要考查应用概念、性质、定理及重要结论进行逻辑推理的能力,要求写出严格的推理和论证过程。
学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。
一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过。