1.【什么叫共轭复数】
共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数.复数z的共轭复数记作zˊ.根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi.共轭复数所对应的点关于实轴对称(详见附图).1.代数特征:(1)|z|=|z′|;(2)z+z′=2a(实数),z-z′=2bi;(3)z• z′=|z|^2=a^2+b^2(实数);(4)z〃=z.2.运算特征:(1)(z1+z2+z3+……+zn)′=z1′+z2′+z3′+……+zn′(2) (z1-z2)′=z1′-z2′(3) (z1·z2)′=z1′·z2′·z3′·……·zn′(4) (z1/z2)′=z1′/z2′ (z2≠0)ps:z′表示复数z的共轭复数(实际形式为z上一横),z〃表示复数z的共轭复数的共轭复数(为z上两横)。
2.讲解一下有关虚数的知识
1、知识结构 本节首先介绍了复数的有关概念,然后指出复数相等的充要条件, 接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念. 2、重点、难点分析 (1)正确复数的实部与虚部 对于复数 ,实部是 ,虚部是 .注意在说复数 时,一定有 ,否则, 不能说实部是 ,虚部是 ,复数的实部和虚部都是实数。
说明:对于复数的定义,特别要抓住 这一标准形式以及 是实数这一概念, 这对于解有关复数的问题将有很大的帮助。 (2)正确地对复数进行分类,弄清数集之间的关系 分类要求不重复、不遗漏,同一级分类标准要统一。
根据上述原则, 复数集的分类如下: 注意分清复数分类中的界限: ①设 ,则 为实数 ② 为虚数 ③ 且 。 ④ 为纯虚数 且 (3)不能乱用复数相等的条件解题.用复数相等的条件要注意: ①化为复数的标准形式 ②实部、虚部中的字母为实数,即 (4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意: ①任何一个复数 都可以由一个有序实数对( )唯一确定.这就是说, 复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的. ②复数 用复平面内的点Z( )表示.复平面内的点Z的坐标是( ),而不是( ), 也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1· , 所以用复平面内的点(0,1)表示 时,这点与原点的距离是1, 等于纵轴上的单位长度.这就是说, 当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的 距离就是虚数单位 ,或者 就是纵轴的单位长度. ③当 时,对任何 , 是纯虚数,所以纵轴上的点( )( )都是表示纯虚数.但当 时, 是实数.所以,纵轴去掉原点后称为虚轴. 由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面) 的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点. ④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z, 书写时大写.要学生注意. (5)关于共轭复数的概念 设 ,则 ,即 与 的实部相等,虚部互为相反数 (不能认为 与 或 是共轭复数). 教师可以提一下当 时的特殊情况,即实轴上的点关于实轴本身对称, 例如:5和-5也是互为共轭复数.当 时, 与 互为共轭虚数.可见, 共轭虚数是共轭复数的特殊情行. (6)复数能否比较大小 教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”, 要注意: ①根据两个复数相等地定义,可知在 两式中,只要有一个不成立, 那么 .两个复数,如果不全是实数,只有相等与不等关系, 而不能比较它们的大小. ②命题中的“不能比较它们的大小”的确切含义是指: “不论怎样定义两个复数间的一个关系‘<’, 都不能使这关系同时满足实数集中大小关系地四条性质”: (i)对于任意两个实数a, b来说,a这三种情形有且仅有一种成立; (ii)如果a(iii)如果a(iv)如果a0,那么ac(二)教法建议 1.要注意知识的连续性:复数 是二维数,其几何意义是一个点 , 因而注意与平面解析几何的联系. 2.注意数形结合的数形思想:由于复数集与复平面上的点的 集合建立了一一对应关系,所以用“形”来解决“数”就成为可能, 在本节要注意复数的几何意义的讲解, 培养学生数形结合的数学思想. 3.注意分层次的教学:教材中最后对于“两个复数, 如果不全是实数就不能本节它们的大小”没有证明, 如果有学生提出来了,在课堂上不要给全体学生证明, 可以在课下给学有余力的学生进行解答. 复数的有关概念 教学目标 1.了解复数的实部,虚部; 2.掌握复很高兴回答楼主的问题 如有错误请见谅。