1.高中物理会考重点知识
怎么说呢,最重要的是牛顿第二定律:F=ma(注意同一性等),动能定理:ΔEk=W合。
除此之外,建议分成各个部分来记。运动学公式主要是:S=V初t+1/2at^2,V末^2-V初^2=2aS,V末=V初+at。
关于能量有W=FScosθ,W=Pt,P=FVcosθ,应记住机械能守恒,能量守恒及重力势能的特点。力学应通过加速度a与运动学联系起来。
电学有电场和电路两部分。电场有力的性质和能的性质,静电力与场强E有关,电场能的性质则与电势φ和电势差U有关。
电路则有部分电路和闭合电路之分,两者都有欧姆定律。部分电路欧姆定律:U=IR,闭合电路欧姆定律:E=U+Ir。
实验也是由这两个公式来设计的。磁场要结合磁场性质,并与电场类比。
电流在磁场中的受力为F=BIL,电荷在磁场中力的作用F=qVB。区分磁场学中左右手的功能。
左手与力有关,右手与电磁转化有关。由于某是前理科生,对于文科物理教到哪不大清楚。
还请LZ再问 吧。
2.2018年物理会考知识点
345220264345244252346204237345272267346230257344270223351227250346262273347226227346204237345206222347232204350215257347211251357274214345234250346262273347226227346204237345206222346226271351235242350277230346230257345217257344273245347232204345223210343200202344273200344271210345217221347203247345222263345227275357274214351203275350203275350247243345206263343200202。
3.高中物理会考知识点论述及公式(详细)
物理定理、定律、公式表 一、质点的运动(1)——直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s–t图、v–t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)—-曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67*10-11N•m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 三、力(常见的力、力的合成与分解) 1)常见的力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67*10-11N•m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0*109N•m2/C2,方向在它们的连线上) 7.电场力F=Eq 。
4.高中物理会考
一,力学 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关) 重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力) 3 ,求F,的合力:利用平行四边形定则. 注意:(1) 力的合成和分解都均遵从平行四边行法则. (2) 两个力的合力范围: F1-F2 F F1 + F2 (3) 合力大小可以大于分力,也可以小于分力,也可以等于分力. 4,两个平衡条件: F合=0 或 : Fx合=0 Fy合=0 5,摩擦力的公式: (1) 滑动摩擦力: f= FN (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关) 6, 浮力: F= gV (注意单位) 7, 万有引力: F=GMm/R² 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体). G为万有引力恒量,由卡文迪许用扭秤装置首先测量出. 在天体上的应用:(M–天体质量 ,m—卫星质量, R–天体半径 8, 库仑力:F=KQq/R² (适用条件:真空中,两点电荷之间的作用力) 电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10,磁场力: 洛仑兹力:磁场对运动电荷的作用力. 公式:f=qVB (BV) 方向–左手定则 安培力 : 磁场对电流的作用力. 公式:F= BIL (BI) 方向–左,热学 1,热力学第一定律:U = Q + W 符号法则:外界对物体做功,W为”+”.物体对外做功,W为”-“; 物体从外界吸热,Q为”+”;物体对外界放热,Q为”-“. 物体内能增量U是取”+”;物体内能减少,U取”-“. 2 ,热力学第二定律: 表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化. 表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化. 表述三:第二类永动机是不可能制成的. 3,理想气体状态方程: (1)适用条件:一定质量的理想气体,三个状态参量同时发生变化. (2) 公式: 恒量 4,热力学温度:T = t + 273 单位:开(K) (绝对零度是低温的极限,不可能达到) 手定则 三,电磁学 (一)直流电路 1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数) 2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关) 3,电阻串联,并联: 串联:R=R1+R2+R3 +……+Rn 并联: 两个电阻并联: R= 4,欧姆定律:(1)部分电路欧姆定律: U=IR (2)闭合电路欧姆定律:I = 路端电压: U = -I r= IR 电源输出功率: = Iε-Ir = 电源热功率: 电源效率: = = (3)电功和电功率: 电功:W=IUt 电热:Q= 电功率 :P=IU 对于纯电阻电路: W=IUt= P=IU = 对于非纯电阻电路: W=Iut P=IU (4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时: 电动势:ε=n 内阻:r=n(二)交变电流 1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω . 2 ,正弦式交流的有效值:E = ;U = ; I = (有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值) 3 ,电感和电容对交流的影响: 电感:通直流,阻交流;通低频,阻高频 电容:通交流,隔直流;通高频,阻低频 电阻:交,直流都能通过,且都有阻碍 4,变压器原理(理想变压器): ①电压: ② 功率:P1 = P2 ③ 电流:如果只有一个副线圈 : ; 若有多个副线圈:n1I1= n2I2 + n3I3 电磁振荡(LC回路)的周期:T = 2π 四,光学 1,光的折射定律:n = 介质的折射率:n = 2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C = 3,双缝干涉的规律: ①路程差ΔS = (n=0,1,2,3–) 明条纹 (2n+1) (n=0,1,2,3–) 暗条纹 相邻的两条明条纹(或暗条纹)间的距离:ΔX = 4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63*10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 ) (爱因斯坦)光电效应方程: Ek = hυ – W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关) 5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量) 五,原子和原子核 氢原子的能级结构. 原子在两个能级间跃迁时发射(或吸收光子): hυ = E m – E n 核能:核反应过程中放出的能量. 质能方程: E = m C2 核反应释放核能:ΔE = Δm C2 至于通过会考,还要扎实学习,有硬本领什么考试都不怕,“学海无涯苦做舟”可不是废话。
5.求高二物理(会考)复习提纲最好全一点的
高二物理电场会考复习【教学结构】电场一。
库仑定律:1。,在真空中两个点电荷间的相互作用力跟它们电量的乘积成正比,跟它们间的距离平方成反比。
作用力在它们的连线上。 F叫静电力,又叫库仑力。
2。库仑定律适用条件:真空中,点电荷之间的相互作用。
3。单位:F:N,Q1,Q2;C,r;m,K:静电常数k=9。
0*109Nm2/C2。4。
库仑力是场力,具有力的所有性质,是矢量有大小、方向、作用点,可改变物体运动状态,改变物体的形状,体积与其它力使物体处于平衡。 5。
元电荷,1。60*10-19C叫做元电荷,可用元电荷做为电荷单位,1个电子带的负电为一个元电荷,一个质子带的正电为一个元电荷。
二。电场1。
电场:使电荷之间发生相互作用的媒介物质,就是电场。 电荷周围存在电场。
2。电场强度:描述电场强弱的物理量,放入电场中某一点的电荷受到的电场力跟它电量的比值叫做这一点的电场强度:,符号E表示电场强度,F表示电场力。
电场强度是矢量,方向,正电荷在电场中受电场力的方向就为该点电场强度方向,负电荷受电场力方向与场强方向相反。 电场强度的单位:N/C,读牛每库仑。
匀强电场:在某个区域内各处场强大小相等,方向相同,该区域电场为匀强电场。点电荷的场强:,Q:产生电场的电荷电量,r为电场中某点到Q本身的距离(Q是点电荷)。
从此式也可以知道距离场源(Q)为r的点有无数多个,而同在以场源为球心,以r为半径的球面上,这些点场强大小均相等,但各点的方向均不同,不能认为是匀强电场。3。
电场线:形象地描述电场中各点场强大小和方向的曲线,曲线上各点的切线方向与该点场强方向相同,曲线疏密程度表示场强大小。 曲线从正电荷出发到负电荷终止。
匀强电场的电场线,是疏密相同的平行的直线。4。
电势差:电势差就是电压。在电路中要指明电阻两端的电压或两点间的电压,在电场中必须指明某两点之间的电势差,用U表示。
电荷在电场中受到电场力,电场力移动电荷做功W,被移动电荷的电量为q,则:,电荷在电场中两点间移动时,电场力所做的功跟它电量的比值,就叫做这两点间的电势差,也可理解为:两点间的电势差在数值上就表示单位电量的电荷从其中一点移到另一点电场力所做功。 单位:伏特,符号V,1V=1J/C,两点间电压为10V,即在两点间从高电势到底电势移动1C正电荷,电场力要做10J的功。
5。电势能,电荷在电场中具有势能,也简称为电势能,是标量。
电势能的变化与电场力做功的关系是:电场力做正功,电势能减少,电场力做负功,电势能增加,电场力做多少功,电势能变化多少。 电场力做正功,把电势能转化为其它形式的能,电场力做负功,把其它形式能转化为电势能。
在匀强电场中,,U为两点间电势差,d为沿电场线方向的距离,单位是:伏/米或伏/厘米。其物理意义为:沿电场线方向单位长度的电势降落,单位长度电压越大,场强越大。
此公式只适用于匀强电场。三。
电容器:两个互相平行,相互绝缘的金属板,就是最简单的平行板电容器。电容器带电量,指电容器一个极板带上电量,且取正值。
放电:使充电后的电容器失去电荷的过程。 2。
电容:我们把使电容器的两极板间电势差增加1伏所需的电量叫电容器的电容。用符号C表示,单位:国际单位制里:法拉:F,若使电容器带电1库仑,两板间电势差为1伏,则电容器的电容为1F,微法:μF1F=106,皮法:1PF=1F=10-12F平行板电容器电容的大小由两板正面积S,两板间距离d,中间的电介质的电常数ε决定。
在处理电容器问题时,有两个基本东西必须注意①,当电容器充电后,仍与电源接通,无论电容器两板间距离如何变化,电容器两极板间电压不变。(2)电容器充电后与电源断开,无论电容器极板间距离如何变化,电容器带电量都是不变的,只要电量保持不变,板间电场强度就不变。
常用电容器主要有两类,其一,固定电容器的电容是不变,其种类有纸质电容器和电解电容器,其二,可变电容器,电容大小是可以改变的。它们的符号如图1所示。
图中甲为固定电容器,乙为电解电容器,丙为可变电容器。【解题要点】例一。
在光滑绝缘的水平面上,带负电的小球甲固定不动,带同种电荷的小球乙以一定速度v0向甲运动时,则小球乙的速度和加速度将()A。加速度变小,速度变小B。
加速度变大,速度变小C。加速度变大,速度变大D。
加速度变小,速度变大解析:在光滑绝缘的水平面的小球乙,带电量不会减少,在水平方向上只受甲球给静电力,方向与v0方向相反,在逐渐接近甲球过程中,静电力逐渐增大,因此小球乙产生的加速度应逐渐加大。 加速度方向与速度方向相反,小球乙做减速运动,速度逐渐减少。
另外题中要求只讨论小球乙向甲球运动过程,至于小球速度减少为零,而后又远离甲球运动,不在本题讨论范围之内。故此本题答案:B。
电场力应是我们学过的第四种力(前面学过三种常见的力、重力、弹力、摩擦力)具有力的所有性质,在解答问题时,不能怎样分析电场力,它与前面三种力是并列的。 例二。
如图2中画出了某一个电场的一些电场线,将一个正点电荷q置于该电场中,下面说法正确的。