人教版九年级数学圆的知识结构

1.九年级数学圆这一章的全部知识点

第四章:《圆》一、知识回顾 圆的周长: C=2πr或C=πd 、圆的面积:S=πr²圆环面积计算方法:S=πR² -πr²或S=π(R² – r²)(R是大圆半径,r是小圆半径) 三、知识要点 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系 外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ;五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①是直径 ② ③ ④ 弧弧 ⑤ 弧弧 中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。

即:在⊙中,∵∥ ∴弧弧 六、圆心角定理 顶点到圆心的角,叫圆心角。圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②;③;④ 弧弧 七、圆周角定理 顶点在圆上,并且两边都与圆相交的角,叫圆周角。1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵和是弧所对的圆心角和圆周角 ∴2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角 ∴ 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径 或∵ ∴ ∴是直径 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△中,∵ ∴△是直角三角形或 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙中, ∵四边形是内接四边形 ∴ 九、切线的性质与判定定理 (1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵且过半径外端 ∴是⊙的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵、是的两条切线 ∴ 平分 十一、圆幂定理 (1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙中,∵弦、相交于点, ∴ (2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙中,∵直径, ∴ (3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙中,∵是切线,是割线 ∴ (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙中,∵、是割线 ∴ 十二、两圆公共弦定理 圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。

即:∵⊙、⊙相交于、两点 ∴垂直平分 十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算 (1)正三角形 在⊙中△是正三角形,有关计算在中进行:;(2)正四边形 同理,四边形的有关计算在中进行,:(3)正六边形 同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:。

2.九年级数学关于圆的全部概念

1. 圆地关于概念

圆、圆心、半径、弦、直径、弧、半圆、优弧、劣弧、弦心距、等弧、等圆、同心圆、弓形、弓形的高。

说明:

(1)直径是弦,但弦不壹定是直径,直径是圆中最长的弦。

(2)半圆是弧,但弧不一定是半圆。

(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。

(4)等弧的长度必定相等,但长度相等的弧未必是等弧。

2. 点和圆的位置关系

说明:点和圆的位置关系与点到圆心的距离和半径大小的数量关系是对应的,即知量位置关系就行确定数量关系;知道数量关系也可以确定位置关系。

3. 和圆关于的角

圆心角、圆外角

说明:这两种与圆关于的角,可以通过对照,从(1)角的顶点的位置;(2)角的两边与圆的位置关系,两个方面去把握它们。

补充:假如角的顶点在圆内,则称这样的角为圆内角,圆心角是特殊的圆内角;假如角的顶点在圆外,且角的两边都与同一个圆相交,则称这样的角为圆外角。

4. 圆的关于性质

(1)圆确实定

<1&gt;圆心确定圆的位置半径确定圆的大小。

<2&gt;不在同一直线上的三个点确定一个圆。

(2)圆的对称性

<1&gt;圆是轴对称图形,任何一条经过圆心的直线都是它的对称轴。

<2&gt;圆是中心对称图形,圆心是它的对称中心。

说明:一个圆的对称轴有无数条,对称中心只有一个,一个圆绕圆心旋转劝斥角度,都能够和原图形重合,即圆还具有旋转不变性。

(3)垂径定理

假如一条直线具有(1)经过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的劣弧(5)平分弦所对的优弧,这五个性质的任何两个性质,哪么这条直线就具有其他三个性质,即:

垂径定理:(1)(2) (3)(4)(5)

推论1:(1)(3) (2)(4)(5)

(2)(3) (1)(4)(5)

(1)(4)(或(5)) (2)(3)(5)(或(4))

(1)(3) (2)(4)(5)是“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”其中的弦必需是非直径的弦,假若弦是直径,那么这两条直径不一定互相垂直。

推论2:圆的两条平行弦所夹的弧相等。

说明:在处理圆的关于问题时,有以下几种常引用的辅助线:

(1)连弦的端点与圆心的半径。

(2)作弦心距

(3)连圆心和弦的中点(遇弦的中点时)

(4)连圆心和弧的中点(遇弧的中点时)

3.我想知道九年级数学中关于圆的一些知识,我学的这方面不太好,特来

1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆 。 固定的端点O叫做圆心,线段OA叫做半径。

2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

3.圆上任意两点间的部分叫作圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆。能够重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫做

等弧。

4. 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

5 垂直于弦的直径平分弦,并且平分弦所对的两条弧。

6. 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

7. 我们把顶点在圆心的角叫做圆心角。

8. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

9. 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

10. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

11. 顶点在圆上,并且两边都与圆相交的角叫做圆周角。

12. 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

14. 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这 个多边形的外接圆。

15. 在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等。

16. 圆内接四边形的对角互补。

17. 点P在圆外——d > r 点P在圆上——d = r 点P在圆内——d r

24.经过半径的外端并且垂直于这条半径的直线是圆的切线。

25.圆的切线垂直于过切点的半径。

26. 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。

27.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹 角。

28.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点叫 做三角形的内心

29.如果两个圆没有公共点,那么就说这两个圆相离,(分外离和内含)如果两个圆只有一个公共 点,那么就说这两个圆相切,(分外切和内切)。如果这两个圆有两个公共点,那么就说这 两个圆相交。

30. 两圆圆心的距离叫做圆心距。

31. 我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形 的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离 叫 做正多边形的边心距。

32.在半径是R的圆中,因为360°圆心角所对的弧长就是圆周长C=2πR,所以n°的圆心角所对的 弧长为nπR =——180

33. 由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形

34. 在半径是R的圆中,因为360°的圆心角所对的扇形的面积就

是圆面积S=πR²

35. 我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥

的母线。

4.初三数学复习知识框架 (知识点、例题)

1、圆的有关概念:

(1)、确定一个圆的要素是圆心和半径。

(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 满足: 。

2、圆的有关性质

(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2圆的两条平行弦所夹的弧相等。

(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。

(5)定理:不在同一条直线上的三个点确定一个圆。

(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;

(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。

(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。

(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。

5.初三数学复习知识框架 (知识点、例题)

1、圆的有关概念:(1)、确定一个圆的要素是圆心和半径。

(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。

大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。

顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。

与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 满足: 。

2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2圆的两条平行弦所夹的弧相等。(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。

推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。

90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。

(5)定理:不在同一条直线上的三个点确定一个圆。(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。

(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。

6.九年级下册关于圆的的知识

(修改版)圆的直径连接两头(一端在圆上,一端在直径上) 这个角是直角 这叫垂径定理 圆周角定理 是 多少 ——乘圆面积或周长=这个扇行的面积或那条弧 360 别的我就不知道了 .圆是以圆心为对称中心的中心对称图形;围绕圆心旋转任意一个角度α,都能够与原来的重合. 2.顶点在圆心的角叫做圆心角.圆心到弦的距离叫做弦心距. 圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理) 切线长定理 垂径定理 圆周角定理 弦切角定理 四圆定理 3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等. 4.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等. 5.把整个圆周等分成360份,每一份弧是1°的弧.圆心角的度数和它所对的弧的度数相等. 6.圆是中心对称图形,即圆绕其对称中心(圆心)旋转180°后能够与原来图形重合,这一性质不难理解.圆和其他中心对称图形不同,它还具有旋转不变性,即围绕圆心旋转任意一个角度,都能够与原来的图形重合. 7.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 8.(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧 (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 9.圆的两条平行弦所夹的弧相等 10.(1)一条弧所对的圆周角等于它所对的圆心角的一半. (2)同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. (3)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. (4)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 11.(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴. (2)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (3)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (4)弦的垂直平分线经过圆心,并且平分弦所对的两条弦. (5)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (6)圆的两条平行弦所夹的弧度数相等. 12.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴. 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 13.平分弦(不是直径)的直径垂直与弦,并且平分弦所对的两条弧. 14.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距也相等. 15.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角相等,所对的弦的弦心距也相等. 16.同一个弧有无数个相对的圆周角. 17.弧的比等于弧所对的圆心角的比. 18.圆的内接四边形的对角互补或相等. 19.不在同一条直线上的三个点能确定一个圆. 20.直径是圆中最长的弦. 21.一条弦把一个圆分成一个优弧和一个劣弧. 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r【圆的平面几何性质和定理】 〖有关圆的基本性质与定理〗 圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是。

7.求山东教育出版社初中数学课本九年级圆的相关知识

圆的有关性质

1 圆的定义:(圆的定义有两种)

2 圆的内部、外部

3 点与圆的位置关系:

①点在圆外 d>r ②点在圆上 d=r ③点在圆内 d4 与圆有关的概念:弦、直径、弧、半圆、优弧、劣弧、弓形、同心圆、等圆、等弧

14.过三点的圆

1定理:不在同直线上的三点确定一个圆。

2 三角形的外接圆、三角形的外心及圆内接三角形的概念。

3反证法的定义及运用反证法证明命题的一般步骤。

15.垂直于弦的直径

1圆的轴对称性

2垂径定理:垂直于弦的直径平分弦,并平分弦所对的两条弧

3圆旋转不变性

16、圆心角、弦心距的概念。

圆心角、弧、弦、弦心距之间的关系。

圆心角的度数与它所对弧的度数的关系:圆心角度数和它所对的弧的度数相等

17、圆周角

1圆周角的概念

2圆周角定理:一条弧所对圆周角等于它所对圆心角的一半。

3圆周角定理的推论:

推论1: 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2: 半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径。

18、直线和圆的位置关系

1、直线与圆的位置关系的定义及有关概念

(1) 直线和圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线,

公共点叫做交点。

(2) 直线和圆有唯一公共点时,叫做直线与圆相切,这时直线叫做圆的切线,

公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线与圆相离。

2、直线与圆的位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线L的距离为d,那么

直线L和⊙O相交 d直线L和⊙O相切 d=r

直线L和⊙O相离 d>r

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

3、圆切线的判定方法

定义:和圆只有一个公共点的直线是圆的切线;

数量关系:和圆距离等于半径的直线是圆的切线;

判定:过半径外端且与这条半径垂直的直线是圆的切线。

4、性质定理:圆的切线垂直于经过切点的半径

5、三角形的内切圆

三角形的内切圆等概念:

和三角形各边都相切的圆叫做三角形的内切圆,内切圆圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

%title插图%num