1.初一下学期 知识点总结(三角形和三角形的证明 的知识要细致一些)
第一部分: 点 、线 、角 一 、线 1、直线 2、射线 3、线段 二、角 1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。 2.角的平分线 3、角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4. 角的分类:(1)锐角 (2)直角 (3)钝角 (4)平角 (5)周角 5. 相关的角: (1)对顶角 (2)互为补角 (3)互为余角 6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。 注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质 (1)对顶角相等 (2)同角或等角的余角相等 (3)同角或等角的补角相等。 三、相交线 1、斜线 2、两条直线互相垂直 3、垂线,垂足 4、垂线的性质 (l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。 四、距离 1、两点的距 2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。 五、平行线 1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。 2、平行线的判定: (1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。 (3)同旁内角互补两直线平行。
3、平行线的性质 (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。 说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________. 5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.第二部分:三角形 知识点: 一、关于三角形的一些概念 1、三角形的角平分线。 三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离) 三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心) 2、三角形的中线 三角形的中线也是一条线段(顶点到对边中点间的距离) 三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心) 3.三角形的高 三角形的高线也是一条线段(顶点到对边的距离) 注意:三角形的中线和角平分线都在三角形内。
如图 2-l, AD、BE、CF都是么ABC的角平分线,它们都在△ABC内 如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内 而图2-3,说明高线不一定在 △ABC内, 图2—3—(1) 图2—3—(2) 图2-3一(3) 图2-3—(1),中三条高线都在△ ABC内, 图2-3-(2),中高线CD在△ABC内,而高线AC与BC是三角形的边; 图2-3一(3),中高线BE在△ABC内,而高线AD、CF在△ABC外。 二、三角形三条边的关系 三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。
等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。 三角形分类 按接边相等关系来分类: 用集合表示,见图2-4 推论三角形两边的差小于第三边。
不符合定理的三条线段,不能组成三角形的三边。 例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。
三、三角形的内角和 定理三角形三个内角的和等于180° 由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。 推论1:直角三角形的两个锐角互余。
三角形按角分类: 用集合表示,见图 三角形一边与另一边的延长线组成的角,叫三角形的外角。 推论2:三角形的一个外角等于和它不相邻的两个内角的和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。 例如图2—6中 ∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8; ∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。
四、全等三角形 能够完全重合的两个图形叫全等形。 两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。
全等三角形的对应边相等;全等三角形的对应角相等。 五、全等三角形的判定 1、边角边公理:“SAS” 注意:一定要是两边夹角,而不能是边边角。
2、角边角公理:ASA 3、AAS 4、SSS 3、直角三角形全等的判定:斜边,直角边”或HL 三角形的重要性质:三角形的稳定性。 六、角的平分线 定理1、在角的平分线上的点到这个角的两边的距离相等。
定理2、一个角的两边的距离相等的点,在这个角的平分线上。 可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点) 七、等腰三角形的判定 定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等。
(简写成“等角对等动”)。 推论。
2.关于三角形的证明
证高交于一点
如图:作AB的高CD和AC的高BE,显然,两高线比交与一点,设为G点,连接AG延长交BC与F,现在要证明AF⊥BC。
由于∠ADC+∠AEB=180,所以ADGE四点共圆,所以∠DAG=∠DEG
同理有DEBC四点共圆,所以有∠BCD=∠DEG
所以∠BCG=∠DAG,又∠DGA=∠FGC,所以∠CFG=∠ADG=90度
所以AF⊥BC
所以三条高交与一点。
证中线交于一点:
可以使用塞瓦定理证明:
塞瓦定理
设O是△ABC内任意一点,
AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1
假设D E 是中点,则连接CO并延长交AB于F
因为BD/DC=1 CE/EA=1 又因为F在AB上,所以AF/FB=1所以F为AB中点,所以三条中线交于一点。
如果有不明白的地方可以补充问题说明一下。
证三条角平分线交于一点:
设三角形ABC,首先两条角平分线(假设是角A和角B的)肯定交于一点,设为D,分别作三边垂线,AB BC AC上的垂足为E F D
由角平分线定理,DE=DF,DF=DG
所以DE=DE,由逆定理,CE也为角平分线
3.关于三角形的知识点总结
原发布者:鑫淼图文
4、三角形的主要线段的定义: (1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段. 如图:(1)AD是△ABC的BC上的中线.(2)BD=DC=BC. 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部且交于三角形内部一点 (重心)③中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线 :三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 ③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样) 10、多边形 :在同一平面内,由一些线段首尾顺次相接组成的图形叫多边
4.三角形的相关知识,定义,内容
课程教材研究所 薛彬 “三角形”一章章节结构是“与三角形有关的线段”“与三角形有关的角”“多边形及其内角和”“课题学习 镶嵌”.这与以往的内容安排有所不同.按照以往的教材,受三角形、多边形、圆顺次展开的限制,这些内容分别属于不同年级.而新的结构是一种专题式设计,以内角和为主题,先研究三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌. 本章教学时间约需10课时,具体分配如下(仅供参考): 7.1 与三角形有关的线段 2课时 7.2 与三角形有关的角 2课时 7.3 多边形及其内角和 2课时 7.4 课题学习 镶嵌 2课时 数学活动 小结 2课时 一、教科书内容和课程学习目标 (一)本章知识结构 本章知识结构框图如下: (二)教科书内容 本章首先介绍三角形的有关概念和性质.例如,在了解三角形的高的基础上,了解三角形的中线、角平分线.又如,在知道三角形的三个内角的和等于180°的基础上,了解这个结论成立的道理.通过本章内容的学习,可以丰富和加深学生对三角形的认识.另一方面, 这些内容是以后学习各种特殊三角形(如等腰三角形、直角三角形)的基础,也是研究其他图形的基础知识. 以三角形的有关概念和性质为基础,本章接着介绍多边形的有关概念与多边形的内角和、外角和公式.三角形是多边形的一种,因而可以借助三角形建立多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来.三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形.多边形的内角和公式就是利用上述方法,由三角形的内角和等于180°得到的.将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习. 镶嵌作为课题学习的内容安排在本章的最后,学习这个内容要用到多边形的内角和公式.通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力. (三)课程学习目标 1了解与三角形有关的线段(边、高、中线、角平分线),知道三角形两边的和大于第三边,会画出任意三角形的高、中线、角平分线,了解三角形的稳定性. 2了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义说明三角形内角和等于180°,探索并了解三角形的一个外角等于与它不相邻的两个内角的和. 3了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并了解多边形的内角和与外角和公式. 4通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计. 二、本章编写特点 (一)加强与实际的联系 三角形是最常见的几何图形之一,在生产和生活中有广泛的应用.教科书通过举出三角形的实际例子让学生认识和感受三角形,形成三角形的概念.多边形概念的引入,也是类似处理的. 三角形有很多重要的性质,如稳定性,三角形的内角和等于180°.教科书在介绍三角形的稳定性的同时,顺带介绍了四边形的不稳定性.这些内容是通过如下的实际问题引入的:“盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做呢?”.然后让学生通过实验得出三角形有稳定性,四边形没有稳定性的结论,进而明白在上述实际问题中“斜钉一根木条”的道理.除此之外,教科书还举出了一些应用三角形的稳定性,四边形的不稳定性的实际例子.对于三角形的内角和等于180°,教科书则安排求视角的实际问题作为例题,加强与实际的联系. 在本章的课题学习中,教科书从用地砖铺地引入镶嵌,进而让学生探究一些多边形能否镶嵌成平面图案,并运用通过探究得出的结论进行简单的镶嵌设计.在编写时关注上述从实践到理论,再从理论到实践的全过程,使学生对理论来源于实践又运用于实践的认识进一步加深. (二)加强与已学内容的联系 学生在前两个学段已学过三角形的一些知识,对三角形的许多重要性质有所了解,在第三学段又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的说理. 上述内容是学习本章的基础:三角形的高、中线、角平分线分别与已学过的垂线、线段的中点、角的平分线有关;用拼图的方法认识三角形的内角和等于180°可以启发学生得出说明这个结论正确的方法,而说明的过程中要用到平行线的性质与平角的定义.在编写时关注本章内容与已学内容的联系,帮助学生掌握本章所学内容.另一方面,又注意让学生通过本章内容的学习,复习巩固已学的内容. (三)加强推理能力的培养 在本章中加强推理能力的培养,一方面可以提高学生已有的水平,另一方面又可以为学生正式学习证明作准备.为达到上述要求,在编写时注意了以下内容的处理: (1)由“两点之间,线段最短”说明“三角形两边的和大于第三边”; (2)由平行线的性质与平角的定义说明“三角形的内角和等于180°”; (3)由“三角形的内角和等于180°”得出“三角形的一个外角等于与它不相邻的两个内角的和”; (4)由“三角形的内角和。
5.三角形中的难点证明
1和3就不用说了吧,极容易
我说2和4吧:
先看2:垂心
已经知道任意三角形三边的中垂线交于一点,即外心O
取三边中点,两两连接构成中点三角形
很显然三角形的三边中垂线分别垂直于中点三角形的三边
所以外心O就是中点三角形垂心,中点三角形不改变三角形任意性,得证!
再看4:欧拉线
中点三角形与原三角形对应点的连线即三条中线交于一点G
G是重心,而且G把中线分为等比例的线段【都是1:2】
所以中点三角形与原三角形位似,位似中心为重心G
所以两个三角形的对应点连线都经过位似中心G
取两三角形的垂心,即原三角形外心O【中点三角形垂心】和垂心H
那么O、G、H三点共线,并且G把OH分成1:2的两部分
证毕!
6.三角形的证明
证明:
PA+PB>AB,PB+PC>BC,PC+PA>AC,
三式相加得:2(PA+PB+PC)>AB+BC+AC
故PA+PB+PC>1/2(AB+BC+AC)
延长BP交AC于D
则 AB+AD>BP+PD
又 PD+DC>PC
两式相加得:AB+AC>PB+PC
同理:AB+BC>PA+PC,
BC+AC>PA+PB
三式相加 得:2(AB+BC+AC)>2(PA+PB+PC)
AB+BC+AC>PA+PB+PC
故1/2 (AB+BC+AC)