北师大版整式的乘除知识点

1.整式乘除知识点

单项式和多项式统称为整式

代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (含有字母有除法运算的,那么式子 叫做分式fraction.) 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 整式和同类项 1.单项式 (1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。

3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式 (2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。 如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。

(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号。一元N次多项式最多N+1项 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

(3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。

在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。 (3)整式: 单项式和多项式统称为整式。

(4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。

②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。

3.几个常数项也是同类项。 (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。

2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。

在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

合并同类项的关键:正确判断同类项。 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。

幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 平方差公式:两数和与这两数差的积等于这两数的平方差。

完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。

同底数幂相除,底数不变,指数相减。 谈整式学习的要点 屠新民 整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要。

整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的。事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景。

本章知识结构框图: 本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面。 一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点。

合并同类项时要注意以下三点。

2.整式的运算,这一章节的知识点及重要内容如上,北师大版七年级下

单项式和多项式统称为整式. 代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式. (含有字母有除法运算的,那么式子 叫做分式fraction.) 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除. 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂. 整式和同类项 1.单项式 (1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式. 3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式 (2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数. 如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1. (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数. 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式.多项式中的符号,看作各项的性质符号.一元N次多项式最多N+1项 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数. (3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列. 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列. 由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变. 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列. 在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动. (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列. b.确定按这个字母向里排列,还是向外排列. (3)整式: 单项式和多项式统称为整式. (4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项. 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同. ②相同字母的次数也相同. 2.同类项与系数无关,与字母排列的顺序也无关. 3.几个常数项也是同类项. (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项. 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 3.合并同类项步骤: ⑴.准确的找出同类项. ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变. ⑶.写出合并后的结果. 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项. 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式). 合并同类项的关键:正确判断同类项. 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除. 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂. 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加. 幂的乘方法则:幂的乘方,底数不变,指数相乘. 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式. 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 平方差公式:两数和与这两数差的积等于这两数的平方差. 完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍. 两数差的平方,等于这两数的平方和,减去这两积的2倍. 同底数幂相除,底数不变,指数相减. 谈整式学习的要点 屠新民 整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要.整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的.事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景. 本章知识结构框图: 本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面. 一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点.合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的。

3.整式的乘除总结

整式的乘除知识点:1、同底数幂的乘法:am·an=am+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

2、幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。 3、积的乘方法则:(ab)n = an·bn(n为正整数) 积的乘方=乘方的积4、单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式注意点:(1)任何一个因式都不可丢掉(2)结果仍是单项式 (3)要注意运算顺序5、多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(注意:项是包括符号的)注意点(1)多项式与多项式相乘的结果仍是多项式;(2)结果的项数应该是原两个多项式项数的积(没有经过合并同类项之前),检验项数常常作为检验解题过程是否的一个有效方法。、乘法公式一:平方差公式:a2-b2=(a+b)(a-b)。

乘法公式二:完全平方公式:(a±b)2=a2±2ab+b2 (首±尾)2=首2±2*首*尾+尾27、am÷an==am-n(a≠0,m,n都是正整数,且m>n))即同底数幂相除,底数不变,指数相减。8、① a0=1(a≠0) ② a-p=1/ap (a≠0,p是正整数)③ 用科学记数法表示较小的数如:即0.000 ……01=10-n9、单项式相除除以单项式 (1)系数相除(2)同底数幂相除 (3)只在被除式里的幂不变 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

怎样熟练运用公式:(一)、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.二)、理解字母的广泛含义乘法公式中的字母a、b可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x+2y-3z)2,若视x+2y为公式中的a,3z为b,则就可用(a-b)2=a2-2ab+b2来解了。三)、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如(3x+5y)(5y-3x)交换3x和5y的位置后即可用平方差公式计算了.2、符号变化 如(-2m-7n)(2m-7n)变为-(2m+7n)(2m-7n)后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)3、数字变化 如98*102,992,912等分别变为(100-2)(100+2),(100-1)2,(90+1)2后就能够用乘法公式加以解答了.4、系数变化 如(4m+2n)(2m-4n)变为2(2m+4n)(2m-4n)后即可用平方差 公式进行计算了.5、项数变化 如(x+3y+2z)(x-3y+6z)变为(x+3y+4z-2z)(x-3y+4z+2z)后再适当分组就可以用乘法公式来解了.。

4.整式的乘除总结

基础知识点总结 知识点1:幂的运算(1)同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加。

即,如:(2)幂的乘方法则: 幂的乘方,底数不变,指数相乘。即,如:(3)积的乘方法则:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。

即, (4)同底数幂的除法法则: 同底数幂相除,底数不变,指数相减。即,知识点2:整式的乘法运算(1)单项式与单项式相乘法则:(如:) 单项式与单项式相乘,只要将系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式(2)单项式与多项式相乘法则:(如:) 单项式与多项式相乘,先用单项式分别乘以多项式的每一项,再把所得的积相加。

(3)多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。如:知识点3:乘法公式(1)两数和乘以这两数的差公式(又叫做:平方差公式):(2)两数和的平方公式(又叫做:完全平方和公式):(3)两数差的平方公式(又叫做:完全平方差公式):知识点4:因式分解1、因式分解是指把一个多项式化成几个整式的积的形式,也叫分解因式。

2、因式分解最终结果特别注意几点:第一,必须分解成积的形式; 第二,分解成的各因式必须是整式; 第三,必须分解到不能再分解为止。3、公因式提取规则总结:① 公因式的系数必须是多项式中各项系数的最大公约数。

②字母必须取多项式中各项都含有的字母。③字母对应的指数,要取多项式中各项该字母指数最小的那一个。

当公因式多项式时,取多项式指数最低的。

5.北师大版的小学数学知识点总结

小学数学四年级前四个单元知识点总结

1、路程速度时间公式:s=vt v=s÷t t=s÷v

2、正方形周长公式:C=4a

3、正方形面积公式:S=a2

4、长方形周长公式:C=2(a+b)

5、长方形面积公式:S=ab

6、加法交换律:a+b=b+a

7、加法结合律:a+b+c=a+(b+c)

8、乘法交换律:a·b=b·a

9、乘法结合律:〔a·b〕·c=a·〔b·c〕

10、乘法分配律:〔a+b〕·c=a·c+b·c

11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角

12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。

13、三角形按角分类:锐角三角形,直角三角形,钝角三角形

14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。

15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形

16、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

17、小数的计数单位是十分之一,百分之一,千分之一——–记作0.1,0.01,0.001—–

18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

20、1平角=2直角 1周角=2平角=4直角

21、三角形具有稳定性

22、三角形任意两边之和大于第三边

23、三角形的内角和是180度

24、学会画角

25、会比较小数的大小

26、单位换算

长度单位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米

质量单位:1千克=1000克 1吨=1000千克=1000000克

钱的换算:1元=10角=100分 1角=10分

时间单位:1时=60分=3600秒 1分=60秒

1年=12月=365天或366天 1天=24小时

一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。

面积单位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米

1公顷=10000平方米 1平方千米=100公顷=1000000平方米

6.求初二数学上册知识点总结(整理)北师大版的

八年级(上)数学期末综合检测试卷 班级: 座号: 姓名:题号 一 二 三 四 总分 得分 一、选择题.(每小题3分,共30分) 1. 在实数 、0、、506、π、中,无理数的个数是……【 】 A.2个 B.3个 C.4个 D.5个 2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是…………………【 】 A、1、2、3B、2、3、4 C、3、4、5D、4、5、6 3. 某品牌皮鞋店销售同种品牌不同尺码的男鞋,采购员再次进货时,对于男鞋的尺码,他最关 注下列统计资料中的 ……………………………………………………【 】 A. 众数 B. 中位数C. 加权平均数 D. 平均数 4.已知 是方程 的一个解,那么 的值是……【 】 A. 1 B.3 C.-3D. -1 5. 如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是………………【 】A.等边三角形 B.腰和底边不相等的等腰三角形 C.直角三角形 D.不等边三角形 6. 下列图形既是轴对称又是中心对称图形的是…………【 】 A.平行四边形 B.正三角形 C.矩形 D.等腰梯形 7. 点M(-3,4)离原点的距离是……………………………………【 】 A. 3 B. 4 C. 5 D. 7. 8.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲 植树x棵,乙植树y棵,那么可以列方程组.………………………【 】 (A) (B) (C)(D) 9.一次函数 ( )的大致图像是………………………【 C 】AB CD 10. 如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),现将对角两顶点重合折叠得图(3)。

按图(4)沿折痕中点与重合顶点的连线剪开后再展开,得到三个图形,这三个图形分别【 D 】 A、都是等腰梯形B、都是等边三角形 C、两个直角三角形,一个等腰三角形 D、两个直角三角形,一个等腰梯形 二、填一填.(每小题3分,共24分) 11. 的立方根是 2. 12. 如果一次函数y=kx+b经过点A(0,3),B(-3,0),那么这个一次函数解析式为. 13. 写出一个解为 的二元一次方程组是14. 小华做作业时不小心洒落了一些墨水,把一道二元一次方程涂黑了一部分: ■ ,但她知道这个方程有一个解为 、.请你帮她把这个涂黑方程补充完整:.15.如图,梯形ABCD中,AD‖BC ,对角线AC、BD相交于点, 则图中面积相等三角形的有对。 16. 一个多边形的内角和等于540°,那么这个多边形为 边形; 17.如图,正方形ABCD的面积是64,点F在AD上,点E在AB的延长线上,CE⊥CF,且△CEF的面积是50,则DF的长度是 ; 18.点P(4,-3)关于x轴对称的点的坐标是。

三.计算题(每小题6分,共24分) 19 计算: (1) (2)(3)解方程组: ( 4) 解方程组:四.解答题(共72分) 20.(8分) 某公司员工的月工资表如下: 员工 经理 副经理 职员A 职员B 职员C 职员D 职员E 职员F 杂工 月工资/元 6000 4000 1700 1300 1200 1100 1100 1100 500 一天小明去该公司应聘,经理对小明表现很满意,拍着小明的肩膀说:“来我公司吧,我们公司员工收入很高,月平均工资2000元.” ①你说该公司的经理有没有欺骗小明? ②你认为用哪个资料表示该公司员工收入的“平均水平”更合适?21. (8分) 我市某中学八年级实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则正好空出一间教室。问这个学校现有空教室多少间?八年级共有多少人?22. (9分)如图:①.写出A、B、C三点的坐标. A ( )B( ) C() ②.若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系?③.在②的基础上,纵坐标都不变,横坐标都乘以-1在同一坐标 系中描出对应的点A〃、B〃、C〃,并依次连接这三个点,所得的△A〃B〃C〃与原△ABC有怎样的位置关系?23. (12分)如图 ABCD中,AE平分∠BAD交BC于E,EF‖AB交AD于F,试问 (1) 四边形ABEF是什么图形吗?请说明理由。

(2) 若∠B=60°,四边形AECD是什么图形?请说明理由。24. (12分) 学校准备添置一批计算机. 方案1:到商家直接购买,每台需要7000元; 方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元. (1)分别写出y1、y2的函数解析式; (2)当学校添置多少台计算机时,两种方案的费用相同? (3)若学校需要添置计算机50台,那么采用哪一种方案较省钱?说说你的理由.25. (11分)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示: 现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行). 销售方式 直接销售 粗加工后销售 精加工后销售 每吨获利(元) 100 250 450(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(6 分) 销售方式 全部直接销售 全部粗加工后销售 尽量精加工,剩余部分直接销售 获利(元) (2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间? (5分)26.(12分)如图23-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F. (1) 求证:。

7.初一下 整式的乘除 的性质,要点和意义

整式和整式的乘法

整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。

同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。

幂的乘方法则:幂的乘方,底数不变,指数相乘。

积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

平方差公式:两数和与这两数差的积等于这两数的平方差。

完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。

同底数幂相除,底数不变,指数相减。

整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要。整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的。事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景。

本章知识结构框图:

本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面。

一、整式的四则运算

1. 整式的加减

合并同类项是重点,也是难点。合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

2. 整式的乘除

重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。

整式四则运算的主要题型有:

(1)单项式的四则运算

此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。

(2)单项式与多项式的运算

此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。

二、因式分解

难点是因式分解的四种基本方法(提公因式法、运用公式法、分组分解法、十字相乘法)。因式分解是整式乘法的逆向变形,因式分解的方法的引入要紧紧抓住这一点。

%title插图%num