乘方的知识点归纳

1.六年级下册乘方的公式:越多越好

同底数幂的乘法公式和法则(1)公式:am·an=am+n(m、n都是正整数)am·an·ap=am+n+p(m、n、p都是正整数)(2)法则:同底数幂相乘,底数不变,指数相加.注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.1.幂的乘方的公式及法则(1)公式:(am)n=amn(m、n都是正整数)〔(am)n〕p=amnp(m、n、p都是正整数)(2)法则幂的乘方,底数不变,指数相乘.2.积的乘方的公式和法则(1)公式(ab)n=an·bn(n是正整数)(abc)n=an·bn·cn(n是正整数)(2)法则积的乘方等于每一个因数乘方的积.上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)an·bn=(ab)n(n是正整数)如:912=(93)4=(94)3310*510=(3*5)10=15103.球的体积与半径的倍数关系(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍1.同底数幂的除法公式和法则(1)公式:am÷an=am-n(a≠0,m、n都是正整数,m>n)(2)法则:同底数幂相除,底数不变,指数相减.注意:满足公式成立的条件.2.零指数与负指数规定:a0=1(a≠0)a-p= (a≠0,p是正整数)说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去..单项式乘单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.如:(2a2)·(3a)=(2*3)(a2·a)=6a3注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.Ⅲ.结果的次数应等于两个单项式的次数之和.2.单项式乘多项式单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.3.多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.Ⅱ.乘的过程中,不要漏掉,注意每项的符号.1.平方差公式(1)公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差.(2)特征:①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.②右边:这两数的平方差.(3)找a与b的简便方法由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.如(3-m)(3+m)中,“3”与“3”相同,作为a,而“-m”与“m”相反,任选其一作为b,那么。

2.你能归纳总结系的乘方的运算法则吗

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂(power)。

其中,a叫做底数(base number),n叫做指数(exponent),当aⁿ看作a的n次方的结果时,也可读作“a的n次幂”。

一个数都可以看作自己本身的一次方。指数1通常省略不写。

在写分数和负数的几次方时要加括号。

运算顺序:先乘方,再括号(先小括号,再中括号,最后大括号),接乘除,尾加减。

计算一个数的小数次方,如果那个小数是有理数,就把它化为 (即分数)的形式,那么特别的,或者说,任何数的0次方等于1,0除外。

特别地,0的非正指数幂没有意义。

3.【1.归纳分式乘方的法则】

运用公式法: 我们知道整式乘法与因式分解互为逆变形.如果把乘法公式反过来就是把多项式分解因式.于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. (二)平方差公式 1.平方差公式 (1)式子: a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积.这个公式就是平方差公式. (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解. 2.因式分解,必须进行到每一个多项式因式不能再分解为止. (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方. 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式. 上面两个公式叫完全平方公式. (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同. ③有一项是这两个数的积的两倍. (3)当多项式中有公因式时,应该先提出公因式,再用公式分解. (4)完全平方公式中的a、b可表示单项式,也可以表示多项式.这里只要将多项式看成一个整体就可以了. (5)分解因式,必须分解到每一个多项式因式都不能再分解为止. (五)分组分解法 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)•(a +b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: ① 列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减. 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算. 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的。

4.初一数学,七年级”幂的乘方”这个知识点,想找点练习题做一下,

幂的乘方?

1、有些单项式除以单项式,单项式中含有幂的乘方或积的乘方,应先化简,后计算.

如:4×12÷(-2×3)2=4×12÷[(-2)2·(x3)2] ①

=4×12÷4×6②

=_________.③

以上①步是_________;②步是_________;③步是__________.

2、

运算(a2·an-1)m=a2m·amn-m的根据是( )

A.积的乘方 B.幂的乘方

C.先根据积的乘方,再根据幂的乘方 D.以上答案都不对

你先做这两道吧

5.【七年级上册数学知识点归纳】

七年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数.知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.知识点11: 乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1. 倒数概念2. 如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1. 乘方的概念,乘方的结果叫什么?2. 认识底数,指数3. 正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念? 注意a的范围。

%title插图%num