1.所有函数的基本性质
集合与函数知识点公式定理记忆口诀
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
高中数学概念总结全集
/Article_Show.asp?ArticleID=33802
2.总结函数性质及其研究方法
函数的基本性质
一、知识复习:
1.增减函数定义:如果对于定义域I内某个区间D上的任意两个子变量的值x1,x2,
当x1
如果对于定义域I内某个区间D上的任意两个子变量的值x1,x2,当x1
都有f(x1)>f(x2),那么我们就说函数f(x)在区间D上是减函数.
2. 最值定义:设函数y=f(x)的定义域为I,如果存在实数M满足:
(1).对于任意的x∈I,都有f(x)≤M;
(2).存在x0∈I,使得f(x0)=M.
那么我们就说M是函数y=f(x)的最大值,
同理,把(1)中的f(x)≤M改为f(x)≥M,则M为f(x)的最小值。
3.奇偶函数的定义:
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么f(x)叫做奇函数;
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么f(x)叫做偶函数。
二、学法指导:
1、基本初等函数的单调性:
(1).正比例函数y=kx(k≠0) 当k>0时是R上的增函数,当当k
(2).反比例函数y=k/x(k≠0)
当k>0时,函数的单调递减区间为(-∞,0),(0,+∞),不存在递增区间。
(注意:不能说在定义域内或在(-∞,0)∪(0,+∞)上是减函数,它是分别在(-∞,0)和(0,+∞)
上减函数,并在一起不是,如是的话,则f(-1)>f(1),即-k>k.显然不对。)
当k
(3).一次函数y=kx+b(k≠0)
当k>0时,函数y=kx+b在R上是增函数,当k
(4).二次函数y=ax2+bx+c(a≠0)
当a>0时,递减区间为(-∞,-b/(2a)],递增区间为[-b/(2a),+∞);
当a
2.复合函数y=f[g(x)]的单调性:当f(x)和g(x)的单调性相同时,复合函数y=f[g(x)]是增函数。
当f(x)和g(x)的单调性相反时,复合函数y=f[g(x)]是减函数。
3.对于函数f(x)±g(x)的单调性可总结为:
增+增=增,增-减=增,减+减=减,减-增=减。
4.用定义法证明函数的单调性的步骤:
(1).设x1,x2属于要证的区间,且x1
(2).比较f(x1)与f(x2)的大小,通常用作差法比较,此时比较它们大小的方法是作差、变形、看符号;
(3).下结论。
5.判断函数奇偶性的方法:
(1)定义法:其步骤为:先求函数的定义域,看是不是关于原点对称,如不是则不是奇偶函数,
如是再判断f(-x)与f(x)或-f(x)是否相等,若f(-x)=f(x)则是偶函数,若f(-x)=-f(x)则是奇函数。
(2)图象法:如果函数的图象关于原点对称,那么这个函数为奇函数,如果函数的图象关于y轴对称,
那么这个函数是偶函数。如果函数的图象关于原点和y轴均不对称,那么这个函数既不是奇函数又不是偶函数。
注意:分段函数的奇偶性要分段判断。
6.单调性与奇偶性:
(1)区别:函数的奇偶性是整个定义域上的性质,是“整体性质”,不能说在一个区间上是奇函数,在另
一个区间上是偶函数,而函数的单调性是在函数定义域或其子集上的性质,是“局部”性质,可以在一个
区间上是增函数,在另一个区间上是减函数。
(2)综合:如果函数y=f(x)是奇函数,那么f(x)在区间(a,b)和(-b,-a)上具有相同的单调性;
如果函数y=f(x)是偶函数,那么f(x)在区间(a,b)和(-b,-a)上具有相反的单调性;
3.函数的重要知识点
一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0)(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角) 一次函数的图像及性质 1.作法与图形:通过如下3个步骤 (1)列表[一般取两个点,根据两点确定一条直线]; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.函数不是数,它是指某一变量过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限; 当b=0时,直线必通过原点,经过一、三象限 当b0,b>0,这时此函数的图象经过一,二,三象限。
当k>0,b<0,这时此函数的图象经过一,三,四象限。 当k<0,b<0,这时此函数的图象经过二,三,四象限。
当k0,这时此函数的图象经过一,二,四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限4、特殊位置关系 当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) 确定一次函数的表达式 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……② (3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。 一次函数在生活中的应用 1.当时间t一定,距离s是速度v的一次函数。
s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。g=S-ft。
4.帮忙总结函数的全部性质
高考数学基础知识汇总第一部分 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。
(3) 第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。
注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象: ⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ ,2 ———“正左负右” ⅱ ———“正上负下”;3 伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;4 对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;5 翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求 的根);⑵图象法;⑶二分法.13.导数 ⑴导数定义:f(x)在点x0处的导数记作 ;⑵常见函数的导数公式: ① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。
⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ 是增函数;ⅱ 为减函数;ⅲ 为常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分 ⑴定积分的定义: ⑵定积分的性质:① ( 常数);② ;③ (其中 。⑶微积分基本定理(牛顿—莱布尼兹公式): ⑷定积分的应用:①求曲边梯形的面积: ; 3 求变速直线运动的路程: ;③求变力做功: 。
第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度 ⑵弧长公式: ;扇形面。
5.高一数学必修1函数概念知识总结
1、指数函数 ( 且 ),其中 是自变量, 叫做底数,定义域是R
2、若 ,则 叫做以 为底 的对数。记作: ( , )
其中, 叫做对数的底数, 叫做对数的真数。
注:指数式与对数式的互化公式:
3、对数的性质
(1)零和负数没有对数,即 中 ;
(2)1的对数等于0,即 ;底数的对数等于1,即
4、常用对数 :以10为底的对数叫做常用对数,记为:
自然对数 :以e(e=2.71828…)为底的对数叫做自然对数,记为:
5、对数恒等式:
6、对数的运算性质(a>0,a≠1,M>0,N>0)
(1) ; (2) ;
(3) (注意公式的逆用)
7、对数的换底公式 ( ,且 , ,且 , ).
推论① 或 ; ② .
8、对数函数 ( ,且 ):其中, 是自变量, 叫做底数,定义域是
图像
性质 定义域:(0, ∞)
值域:R
过定点(1,0)
增函数 减函数
取值范围 0<x<1时,y<0
x>1时,y>0 0<x<1时,y>0
x>1时,y<0
9、指数函数 与对数函数 互为反函数;它们图象关于直线 对称.
10、幂函数 ( ),其中 是自变量。要求掌握 这五种情况(如下图)
11、幂函数 的性质及图象变化规律:
(Ⅰ)所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
(Ⅱ)当 时,幂函数的图象都通过原点,并且在区间 上是增函数.
(Ⅲ)当 时,幂函数的图象在区间 上是减函数.
6.高考数学函数性质归纳
函数是很重要的一部分,我以一个数学专业的结合当年参加高考时对函数部分给你一些建议。
函数思想是数学思想的四大思想之一,在高考中占有重要地位。
函数的性质主要有有界性、单调性、奇偶性、周期性 。同时函数图像也算是一个性质。
初等函数:一次函数,二次函数,反比例函数,指数函数,对数函数。
在具体的对应法则下理解函数的通性,掌握这些具体对应法则的性质。分段函数是重要的函数模型。对于抽象函数,通常是抓住函数特性是定义域上恒等式,利用赋值法(变量代换法)解题。主要思想方法:数形结合,分类讨论,函数方程,化归等。
有界性:就是判断函数的最值问题,一般根据定义域一步一步转化,比较难的就结合图像
单调性:假设x1<x2,判断f(x1)与f(x2)的大小
奇偶性:判断f(x),f(-x)的关系
周期性:f(x+T)=f(x)
祝高考顺利,若有什么问题可以随时问我,我喜欢数学,希望可以给你帮助。加油
7.人教版初中函数知识点总结要最全的
一、函数1.常量、变量和函数在某一过程中可以取不同数值的量,叫做变量.在整个过程中保持统一数值的量或数,叫做常量或常数.一般地,设在变化过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量. 2.函数的两要素(1)函数的定义域(2)对应法则3.函数的表示方法(1) 解析法就是用一个等式来表示一个变量是另一个变量的函数,这个等式叫做这个函数的解析表达式(函数关系式).(2) 列表法 (3) 图像法 4.函数的值域一般的,当函数f(x)的自变量x取定义域D中的一个确定的值a时,函数都有唯一确定的对应值,这个对应值称为x=a时的函数值,简称函数值,记作:f(a).5.函数的图像若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x)),这些点构成一个图形F,这个图形F就是函数y=f(x)的图像. 知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤.二、正比例函数与反比例函数1.正比例函数一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例常数,确定了比例常数k,就可以确定一个正比例函数.正比例函数y=kx有下列性质:(1) 当k>0时,它的图像经过第一、三象限,y随着x的值增大而增大;当k0时,他的图像的两个分支分别位于第一、三象限内,在每一个象限内,y随x的值增大而减小;当k0开口向上 a0,ax^2+bx+c=0有两个不相等的实根 b^2-4ac0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减 函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减 当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a0,y有最小值,当x=h时,y最小值=k,若a0,y有最小值,当x=- 时,y最小值= ,若a。