1.数学新课程标准的核心概念有哪些
数学新课程标准的核心概念有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
它们有着密切的联系,这十个概念在数学新课程标准中有一个承上启下的作用,上连目标,下接内容,非常重要,所以也把它们称为核心概念。 通过学习数学新课程标准,在新课程标准的理念下,结合教学实际,我对这些核心概念有一些粗浅的理解。
1、数感:数感是关于对数量、数量关系、运算结果估计等方面的感悟,也是对数的抽象、数的应用的一种认识。有关数感的教学内容很多。
比如:单位,在具体情境中,碰到一些数量就要选择一种对应单位对它进行刻画,这种感悟就是一种数感。 在培养数感的问题上,我们教师有很多工作要做,要创建具体情境,举行各种活动,给孩子创造各种机会,激发他们对数的感悟,逐步积累经验,慢慢建立数感。
数感不是短时间内就能让学生感受到的,数感的形成是一个长期的过程。 2、符号意识 :符号意识主要是指能理解并运用符号表示数、数量关系和变化规律,还能运用符号进行运算和推理,获得一般性的结论,促进学生数学的表达和思考。
符号意识在数学学习中很重要,可以说它是一种简洁的数学语言,能对数学内容进行准确的表达和交流,是一种重要的载体。比如:在数学教学中对鸡兔同笼、方程等问题的研究中,符号意识的应用就能方便、快捷地刻画数学模型,迅速便捷地解题,渗透模型思想,奠定重要的数学基础。
(竭力为您解答,希望给予【好评】,非常感谢~~)。
2.小学到底该怎样进行数学核心概念的教学
在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
《标准》指出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。”
从这10个核心概念中不难看出,核心概念不是指具体的内容本身,而是指内容本身所反映出来的基本思想、思维方法,也是学生在数学学习中应该具备的感悟、观念、意识、能力等。核心概念反映了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。
与《实验稿》相比,在这10个核心概念中,有4个是新增加的,它们分别是运算能力、模型思想、几何直观、创新意识;有3个是名称或内涵发生较大变化的,它们分别是数感、符号意识、数据分析观念;剩下的3个,既保持了原有名称,也基本保持了原有内涵。数学教材为学生的数学学习活动提供了学习主题、基本线索和知识结构,是实现数学课程目标、实施数学教学的重要资源,积极探索教材内容的开发与核心概念更好融合是当下数学教师重要任务之一。
在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素。但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用。
上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念。(一)为什么要设计核心概念 在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。
从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。这是一个渗透在整个标准的研制过程中。
第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念。
(二)核心概念的理解1、数感 《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。
《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。
这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,能以数学的思维研究现实,能用数学的方法解决实际问题。
它使人将数与现实情境联系起来,令人眼中看到的世界有了量化的意味。 数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
培养和发展学生的数感,应该注意以下两个方面:⒈引导学生联系自己身边具体、有趣的事物;⒉注重解决实际问题。2、符号意识首先,《标准》将“符号感”更名为“符号意识”,更加强调学生主动理解和运用符号的心理倾向。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律。这一条强调了符号表示的作用。
知道使用符号可以进行运算和推理,得到的结论具有一般性。这一条,强调了“符号”的一般性特征。
因为用数进行的所有运算都是个案,而数学要研究一般问题,一般问题需要通过符号来表示、运算和推理。因此一方面符号可以像数一样进行运算和推理,另外通过符号运算和推理得到的结论是具有一般性的。
建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。符号感是人对符号的意义、符号的作用的理解,以及主动地使用符号的意识和习惯。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。发展学生的符号感可以同时从两方面进行:⒈结合数学内容,及时教给学生一些数学符号;⒉鼓励学生创造性地使用自己的独特符号。
3、空间观念是培养学生初步的创新精神和实践能力需要的基本要素。除了将《实验稿》中最后一条独立为另一个核心概念“几何直观”外,《标准》对于“空间观念”的阐述基本保持了原来的说法。
空间观念表现为对现实世界里的物体的形状、大小、位置、变化及相互关系的理解与。
3.数学新课标中提出的10个核心概念如何理解
《数学课程标准(实验稿)》在“课程设计思路”中提出了六个核心概念:“数感、符号感、空间观念、统计2113观念、应用意识和推理能力”,本次修订对此做了调整,共提出十个数学课程5261与教学应当注重发展的核心概念,包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识4102和创新意识。同时,对每一个核心概念都做出了较为明确的阐述,有助于教师更好地把握课程目标、深刻地理解课程内容,同时对于数学课程内容的选择和教学方法的改革也有重要的指导意义。
事实上,把上面这些词统称为“概念”并不确切,因为这1653些词所要表达的东西并不是客观存在,甚至很难清晰地表达这些词的内涵,版因此修订后的数学课程标准中没有对这些词本身统一给出的确切表达。数学课程权标准之所以提出这些词,希望表达的是认识一类数学概念的思维模式,而正确地把握这些思维模式,对理解相关的数学概念是非常重要的。
4.怎样把握数学教学的几个核心问题心得
随着基础教育课程改革的不断深入,人们越来越关注学生素质的培养。
就数学学科而言,更关注学生的数学素养的提高,特别是有关数学核心素养的问题更引起广泛的讨论。如何理解数学核心素养,数学核心素养与数学基本思想、数学思想方法等之间的关系如何,本文试对这些问题谈一谈自己的理解。
一、对数学核心素养的理解数学核心素养是数学学习者在学习数学或学习数学某一个领域所应达成的综合性能力。数学核心素养是数学的教与学过程应当特别关注的基本素养。
《义务教育数学课程标准(2011年版)》(以下简称《标准》)明确提出10个核心素养,即数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。在《〈义务教育数学课程教准(2011年版)〉解读》等一些材料中,曾把这些表述称为核心概念,但严格意义上讲,把这些表述称为”概念”并不合适,它们是思想、方法或者关于数学的整体理解与把握,是学生数学素养的表现。
因此,把这10个表述称为数学核心素养是恰当的。数学核心素养可以理解为学生学习数学应当达成的有特定意义的综合性能力。
核心素养不是指具体的知识与技能,也不是一般意义上的数学能力。核心素养基于数学知识技能,又高于具体的数学知识技能。
核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、阶段性和持久性。数学核心素养与数学课程的目标和内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要的意义和价值。
“数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的市民的需要而具备的认识,并理解数学在自然、社会生活中的地位和能力,作出数学判断的能力,以及参与数学活动的能力。”[1]可见,数学素养是人们通过数学的学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。
人们所遇到的问题可能是数学问题,也可能不是明显的和直接的数学问题,而具备数学素养的人可以从数学的角度看待问题,可以用数学的思维方法思考问题,可以用数学的方法解决问题。比如,人们在超市购物时常常发现这样的情境,收银台前排了长长的队等待结账,而只买一两样东西的人也同样和买多样东西的人排队等候。
有位数学家看到这种情境马上想到,能否考虑为买东西少的人单独设一个出口,这样可以免去这些人长时间地等候,会大大提高效率。那么问题就出现了,什么叫买东西少,1件、2件、3件或4件,上限是多少?设定不同件数会对收银的整体情况产生什么影响?因此,会想到用统计的方法,收集不同时段买不同件数东西人的数量,用这个数据可以帮助人们作出判断。
在这个过程中,至少从两个方面反映面对这样的情境,具有一定的数学素养有助于帮助人们提出问题和解决问题。首先是数感,具有数感的人会有意识地把一些事情与数和数量建立起联系,认识到排队结账这件事中有数学问题,人们买东西的数量(个数)与结账的速度有关系。
买很少的东西也同样排很长时间队,一方面会显得交款处排很长的队,另一方面这些只买很少东西的人在心理上会产生焦虑。其次是数据分析观念,解决这个问题时需要数据分析观念,用具体的数据说话会有说服力地解决这个问题。
从这个例子中可以了解到,具备数学素养可能有助于人们在具体的情境中发现问题、提出问题和解决问题。而这个情境本身可能并非有明显的数学问题。
《标准》提出的这些数学核心素养一般与一个或几个学习领域内容有密切的关系。某些核心素养与单一的学习领域内容相关。
例如,数感、符号意识、运算能力与”数与代数”领域直接相关。在学习数的认识、数的运算、字母表示数等内容时与这些核心素养直接联系。
数的认识的学习过程有利于形成学生的数感,数感的建立有助于学生对数的理解和把握。空间观念与”图形与几何”领域密切相关。
学习图形的认识和图形的关系等内容应注重学生空间观念的发展。学生探索一个正方体有多少个面,怎样求易拉耀的表面积等内容时都需要空间观念的支撑。
数据分析观念与”统计与概率”领域直接相关,数据的收集、整理、呈现和判断的整体过程是形成学生的数据分析观念的过程。有些核心素养与几个领域都有密切的关系,不直接指向某个单一的领域,包括几何直观、推理能力和模型思想。
几何直观在学习图形与几何、数与代数等领域的内容时都会用到。在解决具体数学问题时,可以采用画图的方法帮助理解数与代数问题中的数量关系。
推理能力在几个领域的学习中都会用到。推理在几何中经常运用,特别是初中阶段的平面几何的证明。
在数与代数中也常常用到推理。在小学数学教学中归纳是常用的思维方式。
演绎也会经常用到,最简单的在表述一些运算的算理时,其实用到了演择推理的方法。如在学习”20以内退位减法”时,”看减法,想加法”是用加减之间互为逆运算的方法来算的。
而这个过程通常表述为,”因为9+6=15,所以15-9=6″,这里事实上没有把”加减之间互为逆。
5.怎样把握数学教学的几个核心问题心得
一、什么是数学教学的核心问题
当代美国著名数学家哈尔莫斯曾说:问题是数学的心脏。那什么是问题?《现代汉语大词典》的解释是:“要求回答或解释的题目”,“必须要研究讨论并加以解决的矛盾、疑难”。所谓的问题通常是学生不能立即作答的,需要思维活动参与、并付出相应努力而最后获解的疑难。
笔者认为核心问题即指中心问题,是教学过程的诸多问题中最具思维价值、最有利于学生思考及最能揭示事物本质的问题。数学教学中的核心问题,要符合问题的特征,还要满足于教学的需要。它是教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的中心问题。
核心问题可以是针对概念的本质内涵所提的问题。核心问题也可以为了探究知识的来龙去脉而在关键环节提出的指向性问题。核心问题还可以在学生认知困惑处的方法指引或者思路点拨。
教学中的核心问题要依据教学内容而定,需要教师认真研究,有时偏重引领学生经历知识的形成过程,获得深刻的数学理解;有时则可能偏重引导学生体会、掌握学习方法,感悟基本的数学思想。
二、为什么要确立数学教学的核心问题
成功提炼核心问题并以此作为统领,能够促进并提高数学教学的有效性。
1.有利于学生清晰学习目标。
2.有利于学生践行自主学习。
3.有利于学生发展思维能力。
4.有利于学生整理所学知识。
三、如何确立数学教学的核心问题
1.教师要准确把握教学内容。教师要把握“教什么”。弄明白“教什么”,首先要梳理知识点,知道教材讲了什么,需要学生掌握哪些知识,新形成哪些技能,感悟哪些数学思想方法等。
2.要准判断教学重难点。
3.要准确把握知识之间的联系。