浅谈数形结合的预备知识

1.谈谈“数形结合”

数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。批注:本答案摘自 ,有哪里不明白的地方,可以去看看学习学习。

2.谈一谈数形结合解决问题的体会

数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。

数形结合:”数”和”形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状,大小,位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

数形结合是培养和发展学生的空间观念和数感,进行形象思维与抽象思维的交叉运用,使多种思维互相促进,和谐发展的主要形式;数形结合教学又有助于培养学生灵活运用知识的能力。

3.数形结合有什么知识

数形结合思想在解题中的应用

一、知识整合

1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷.所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过”以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.

3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究”以形助数”.

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程.这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野.

4.谈一谈数形结合解决问题的体会

数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。

数形结合:”数”和”形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状,大小,位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合是培养和发展学生的空间观念和数感,进行形象思维与抽象思维的交叉运用,使多种思维互相促进,和谐发展的主要形式;数形结合教学又有助于培养学生灵活运用知识的能力。

5.结合自己的教学实践谈一谈数形结合思想在小学数学教学中的渗透与应用

数形结合不仅是一种数学思想,也是一种很好的教学方法。著名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微”。在教学中,许多算理学生模棱两可,如能做到数形结合,学生便可透彻地加以理解。如在教学《异分母分数加减法》时,我们利用数形结合使学生体会“通分”的必要性,理解异分母分数加减法的算理,突破教学难点。

在例题讲解后的回顾过程教师问道:

(1)让我们一起回顾一下用通分的方法计算这三道题的过程,想一想,你发现了什么?

教师这时边播放课件边语言讲解。

通过以上数形结合的办法,既强化了异分母分数加法的算法,又深刻理解了这个算法的算理所在,数形结合相得益彰。

6.谈谈在教学中怎样有效地数形结合,引导学生深入理解数学知识的本质

新课程标准中指出,高中数学课程的目标之一是“使学生获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用”。数学思想方法有很多,以下我想结合自己的教学实践,以数形结合思想为例,谈谈我在教学中是如何使用教材使学生的数形结合能力逐步得到提高的。

数学是研究空间形式和数量关系的科学,数形结合思想是重要的数学思想之一,它是根据数学问题的条件和结论之间的内在联系,既分析研究对象的代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决。它的实质是将抽象的数学语言与直观的图形结合起来,在代数与几何的结合上寻找解题思路。它包含两个方面:“以形助数”,即借助形的生动和直观性来阐明数之间的联系;“以数辅形”,即借助于数的精确性和规范严密性来阐明形的某些属性。正如我国著名的数学家华罗庚先生所说“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”。

7.学习数学时的数形结合思想的内容

“数缺形时少直观,形少数时难入微。”

“数”和“形”是数学的两个柱石,所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分利用这种结合,探索解决问题的思路,从而使问题得以解决的思想方法。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

在运用数形结合思想分析和解决问题时,有几点需要注意:第一.要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二.恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三.正确确定参数的取值范围。

(附)1. 分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。

2. 所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

3. 分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。

4. 分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。

5. 含参数问题的分类讨论是常见题型。

6. 注意简化或避免分类讨论。

%title插图%num