关于整式的知识结构图

1.初一数学整式知识点归纳简练点

单项式和多项式统称为整式. 代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式. (含有字母有除法运算的,那么式子 叫做分式fraction.) 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除. 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂. 整式和同类项 1.单项式 (1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式. 3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式 (2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数. 如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1. (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数. 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式.多项式中的符号,看作各项的性质符号.一元N次多项式最多N+1项 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数. (3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列. 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列. 由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变. 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列. 在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动. (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列. b.确定按这个字母向里排列,还是向外排列. (3)整式: 单项式和多项式统称为整式. (4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项. 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同. ②相同字母的次数也相同. 2.同类项与系数无关,与字母排列的顺序也无关. 3.几个常数项也是同类项. (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项. 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 3.合并同类项步骤: ⑴.准确的找出同类项. ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变. ⑶.写出合并后的结果. 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项. 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式). 合并同类项的关键:正确判断同类项. 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除. 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂. 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加. 幂的乘方法则:幂的乘方,底数不变,指数相乘. 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式. 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 平方差公式:两数和与这两数差的积等于这两数的平方差. 完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍. 两数差的平方,等于这两数的平方和,减去这两积的2倍. 同底数幂相除,底数不变,指数相减. 谈整式学习的要点 屠新民 整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要.整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的.事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景. 本章知识结构框图: 本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面. 一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点.合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的。

2.初一数学整式知识点归纳

单项式和多项式统称为整式。

代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (含有字母有除法运算的,那么式子 叫做分式fraction.) 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 整式和同类项 1.单项式 (1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。

3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式 (2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。 如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。

(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号。一元N次多项式最多N+1项 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

(3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。

在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。 (3)整式: 单项式和多项式统称为整式。

(4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。

②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。

3.几个常数项也是同类项。 (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。

2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。

在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

合并同类项的关键:正确判断同类项。 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。

幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 平方差公式:两数和与这两数差的积等于这两数的平方差。

完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。

同底数幂相除,底数不变,指数相减。 谈整式学习的要点 屠新民 整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要。

整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的。事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景。

本章知识结构框图: 本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面。 一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点。

合并同类项。

3.初一数学整式知识点归纳

单项式和多项式统称为整式。

代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (含有字母有除法运算的,那么式子 叫做分式fraction.) 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 整式和同类项 1.单项式 (1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。

3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式 (2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。 如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。

(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号。一元N次多项式最多N+1项 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

(3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。

在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。 (3)整式: 单项式和多项式统称为整式。

(4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。

②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。

3.几个常数项也是同类项。 (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。

2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。

在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

合并同类项的关键:正确判断同类项。 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。

幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 平方差公式:两数和与这两数差的积等于这两数的平方差。

完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。

同底数幂相除,底数不变,指数相减。 谈整式学习的要点 屠新民 整式是代数式中最基本的式子,引进整式是实际的需要,也是学习后续内容(例如分式、一元二次方程等)的需要。

整式是在以前学习了有理数运算、列简单的代数式、一元一次方程及不等式的基础上引进的。事实上,整式的有关内容在六年级已经学习过,但现在的整式内容比过去更加强了应用,增加了实际应用的背景。

本章知识结构框图: 本章有较多的知识点属于重点或难点,既是重点又是难点的内容为如下三个方面。 一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点。

合并同类项时要注意以下三点。

4.北师大版七年级下册数学知识结构图

北师大版七年级下册数学知识结构图

一、整式的运算

1、整式

2、整式的加法

3、同底数幂的乘法

4、幂的乘方与积的乘方

5、整式的乘法

6、平方差公式

7、完全平方公式

8、整式的除法

二、平行线与相交线

1、余角与补角

2、探索平行的条件

3、平行线的特征

4、用尺规作线段和角

三、生活中的数据

1、认识百万分之一

2、近似数和有效数字

3、世纪新生儿图

课题学习:制作“人口图”

四、概率

1、游戏公平吗

2、摸到红球的概率

3、停留在黑砖上的概率

五、三角形

1、认识三角形

2、图形的全等

3、全等三角形

4、探索三角形全等的条件

5、作三角形

6、利用三角形全等测距离

7、探索直角三角形全等的条件

六、变量之间的关系

1、小车下滑的时间

2、变化中的三角形

3、温度的变化

4、速度的变化

七、生活中的轴对称

1、轴对称现象

2、简单的轴对称图形

3、探索轴对称的性质

4、利用轴对称设计图案

5、镜子改变了什么

5.初二上册数学知识结构图

有理数知识梳理一、知识结构相反意义量正数零负数有理数数轴有理数的运算有理数大小比较相反数绝对值法则运算律加法法则减法法则乘法法则乘方法则除法法则分配律结合律交换律二、知识要点本章主要内容是有理数的有关概念及其运算。

首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法、乘除法和乘方运算的意义、法则和运算律。本章由3个单元组成.第一单元为有理数的概念.由“比零小的数”、“数轴”、“绝对值与相反数”等3节组成.第二单元为有理数的运算.由“有理数的加 法与减法”、“有理数的乘法与除法”、“有理数的乘方”等3节组成.第三单元为有理数的混合运算.由“有理数的混合运算”单独1节组成.此外,通过观察、试验、类比、推断等活动,体验数、符号和图形,能有效地描述现实世界的数量关系,发展数感和符号感;结合具体情境和生活经验中的数学信 息,发现并提出数学问题,积极参与对数学问题的讨论,积累解决问题的方法和经验,体验在解决问题的过程中如何与他人合作交流. 重点:有理数的运算难点:绝对值的理解和运用以及有理数乘法法则的理解 第二章整式的加减知识梳理一、知识结构图整式的加减运算用字母表示数列式表示数量关系单项式整式多项式合并同类项去括号二、知识要点: 本章主要内容是单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等。

整式的加减是学习下章“一元一次方程”的直接基础,也是以后学习分式方程和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科以及其他科学技术不可缺少的数学工具。 本章包括两节内容。

在第2.1节“整式”主要介绍单项式、多项式、整式及其相关概念。这些概念是结合实际问题给出的。

在引出这些概念的过程中,教科书充分重视与实际问题的联系,在实际情境中抽象出数学概念。 在第2.2节“整式的加减”是在学习合并同类项和去括号的基础上,研究整式加减的运算法则。

本节内容的编写充分重视了“数式通性”,是在有理数运算的基础上,通过类比来研究整式的加减运算法则。抓住重点、加强练习,打好基础。

本章教学必须抓好概念的教学,合并同类项的方法教学,以及去括号的符号变化教学。要适当进行加强练习,使学生熟练掌握整式加减运算的法则,为今后的学习打好基础本章重点和难点分析:根据学生已有知识经验和本章的地位与作用,确定本章重点和难点是整式的加减运算,合并同类项和去括号。

整式的加减主要是通过合并同类项把整式化简,因此必须要熟练地进行合并同类项。本章教学大约需要9课时,具体分配如下:2.1 整式 约2课时2.2 整式的加减 约4课时数学活动及本章小结 约2课时 单元测验 1课时第三章 一元一次方程知识梳理一、知识结构框架图:实际问题数学问题(一元一次方程) 数学问题的解(x = a) 实际问题的答 案检验解方程实际问题对利用一元一次方程解决实际问题进行进一步探究结合实际问题讨论解方程(去括号与去分母)解一元一次方程的一般步骤一元一次方程等式的性质结合实际问题讨论解方程(合并同类项与移项二、知识要点:本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析解决实际问题。

其中,以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。全章共包括四节内容:3.1从算式到方程:分为两个小节。

3.1.1一元一次方程:本小节中引出了方程、一元一次方程、方程的解等基本概念,并且对于“根据实际问题中的数量关系,设未知数,列出一元一次方程”的分析问题过程进行了归纳。3.1.2等式的性质:本小节通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法。

3.2一元一次方程的讨论(一)——合并同类项与移项:重点讨论两方面的问题:(1)如何根据实际问题列方程?这是贯穿全章的中心问题。(2)如何解方程?本节重点讨论解方程中的“合并同类项”和“移项”。

3.3一元一次方程的讨论(二)——去括号与去分母:重点讨论两方面的问题:(1)如何根据实际问题列方程?这是贯穿全章的中心问题。(2)如何解方程?本节重点讨论解方程中的“去括号”和“去分母”。

3.4实际问题与一元一次方程:本节重点建立实际问题的方程模型,培养学生运用一元一次方程分析和解决实际问题的能力。 第四章 图形的初步认识知识梳理一、知识结构如下: 二、知识要点:本章是初中阶段“空间与图形”领域的起始章。

主要内容是图形的初步认识。在前两个学段,学生已了解了一些简单几何体和平面图形的基本特征,但较为肤浅。

本章将在前面学习的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系。在此基础上,认识一些简单的平面图形——直线、射线、线段、角以及直线的两种最常见的位置关系——相交与平行。

线段与角是两种最基本的图形,它们在周围随处可见,和人们的生活和生产实践密切相关。在今后的几何学习中几乎所有问题都会涉。

6.初一数学第一章知识结构图

无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。

分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。

希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。

所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。 理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。

如圆周率、2的平方根等。 实数(real munber)分为有理数和无理数(irrational number)。

·无理数与有理数的区别: 1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数, 比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数, 比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数. 2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。

本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。 利用有理数和无理数的主要区别,可以证明√2是无理数。

证明:假设√2不是无理数,而是有理数。 既然√2是有理数,它必然可以写成两个整数之比的形式: 实数包括有理数和无理数。

其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数 自然数(natural number) 用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。

自然数由0开始 , 一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。 序数理论是意大利数学家G.皮亚诺提出来的。

他总结了自然数的性质,用公理法给出自然数的如下定义。 自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。

②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1是0的后继者。

④0不是任何元素的后继者。 ⑤不同元素有不同的后继者。

⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。 基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。

这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。

自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。 自然数在日常生活中起了很大的作用,人们广泛使用自然数。

“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。

不过,在数论中,多采用前者;在集合论中,则多采用后者。目前,我国中小学教材将0归为自然数! 自然数是整数,但整数不全是自然数。

例如:-1 -2 -3。

是整数 而不是自然数 全体非负整数组成的集合称为非负整数集(即自然数集) 所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。

从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。

可以写成一串质数相乘的积。第五章: 本章重点:一元一次不等式的解法, 本章难点:了解不等式的解集和不等式组的解集的确定,正确运用 不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别. (1)不等式概念:用不等号(“≠”、“”)表示的不 等关系的式子叫做不等式 (2)不等式的基本性质,它是解不等式的理论依据. (3)分清不等式的解集和解不等式是两个完全不同的概念. (4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心 (6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集 (7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成 (8).利用数轴确定一元一次不等式组的解集 第六章: 1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值。

7.北师大版七年级下册数学知识结构图

北师大版七年级下册数学知识结构图 一、整式的运算1、整式2、整式的加法3、同底数幂的乘法4、幂的乘方与积的乘方5、整式的乘法6、平方差公式7、完全平方公式8、整式的除法二、平行线与相交线1、余角与补角2、探索平行的条件3、平行线的特征4、用尺规作线段和角三、生活中的数据1、认识百万分之一2、近似数和有效数字3、世纪新生儿图课题学习:制作“人口图”四、概率1、游戏公平吗2、摸到红球的概率3、停留在黑砖上的概率五、三角形1、认识三角形2、图形的全等3、全等三角形4、探索三角形全等的条件5、作三角形6、利用三角形全等测距离7、探索直角三角形全等的条件六、变量之间的关系1、小车下滑的时间2、变化中的三角形3、温度的变化4、速度的变化七、生活中的轴对称1、轴对称现象2、简单的轴对称图形3、探索轴对称的性质4、利用轴对称设计图案5、镜子改变了什么。

%title插图%num