1.二次函数两点式公式
y=a(x-x1)(x-x2)。其中x1,x2是方程y=ax2+bx+c(a≠0)的两根。
两点式又叫两根式,两点式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。
知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。
扩展资料:
二次函数解析式的其他形式:
(1)一般式:y=ax²+bx+c (a,b,c为常数,a≠0)。
(2)顶点式:y=a(x-h)²+k(a,h,k为常数,a≠0)。
参考资料:百度百科——二次函数
2.二次函数一般式该写为两点式的方法
(一)二次函数有三种解析式:
1.一般式:y=ax²+bx+c
2.顶点式:y=a(x+h)²+k
3.交点式:y=a(x-x1)(x-x2)
交点式也称两点式或两根式
其中,x1、x2是抛物线与x轴两交点的横坐标
也是对应方程ax²+bx+c=0的两个根
当△<;时,两个交点不存在。
(二)二次函数一般式改写为两点式,用求根法
即先令y=0,解得方程ax²+bx+c=0的
两个根为x1、x2,
写出对应的函数式y=a(x-x1)(x-x2),即可。
扩展资料
如果3个交点中有2个交点是二次函数与x轴的交点。
那么,可设这个二次函数解析式为:y=a(x-x1)(x-x2)(x1,x2是二次函数与x轴的2个交点坐标),根据另一个点就可以求出二次函数解析式。
如果知道顶点坐标为(h,k),则可设:y=a(x-h)²+k,根据另一点可求出二次函数解析式。
参考资料:百度百科——二次函数一般式
3.二次函数一般式的知识点总结
二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x²的图像, 可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 Δ= b^2-4acV.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。 答案补充 画抛物线y=ax2时,应先列表,再描点,最后连线。
列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点 答案补充 如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)。
4.所有二次函数公式
顶点式y=a(x-h)^2+k 两根式y=a(x-X)(x-X)应用:顶点式y=a(x-h)^2+k 例1:一个二次函数的顶点是(3,1),且过点(0,10) 则可以设这个二次函数的的解析式为:y=a(x-3)^2+1 又因为过点(0,10) 代入可得 10=a(0-3)^2+1 解得 a =1 所以这个二次函数的解析式为y=(x-3)^2+1 化解得:y=x^2-6x+10 例1:一个二次函数的两根x1=1 ,x2=3,且过点(0,9) 则可以设这个二次函数的的解析式为:y=a(x-1)(x-3) 又因为过点(0,9) 代入可得 9=a(0-1)(0-3) 解得 a =3 所以这个二次函数的解析式为y=3(x-1)(x-3) 化解得:y=3x^2-12x+9。
5.二次函数一般式的知识点总结
二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x??的图像, 可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 Δ= b^2-4acV.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。 答案补充 画抛物线y=ax2时,应先列表,再描点,最后连线。
列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点 答案补充 如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)。
6.二次函数两点式是什么
1.二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点. (2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和 x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).2.二次函数解析式的确定 确定二次函数解析式,一般仍用待定系数法.由于二次函数解析式有三个待定系数a、b、c(或a、h、k或a、x1、x2),因而确定二次函数解析式需要已知三个独立的条件.当已知抛物线上任意三个点的坐标时,选用一般式比较方便;当已知抛物线的顶点坐标时,选用顶点式比较方便;当已知抛物线与x轴两个点的坐标(或横坐标x1,x2)时,选用两根式较为方便. 注意:当选用顶点式或两根式求二次函数解析式时,最后一般都要化一般式. 3.二次函数y=ax2+bx+c的图像 二次函数y=ax2+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线. 4.二次函数的性质 根据二次函数y=ax2+bx+c的图像可归纳其性质如下表: 函数 二次函数y=ax2+bx+c(a,b,c是常数,a≠0) 图 像 a>0 a- 时,y随x的增大而增大. (4)抛物线有最低点,当x=- 时,y有最小值,y最小值= . (1) )抛物线开口向下,并向下无限延伸. (2)对称轴是x=- ,顶点坐标是(- , ). (3)当x- 时,y随x的增大而减小. (4)抛物线有最高点,当x=- 时,y有最大值,y最大值= . 5.求抛物线的顶点、对称轴、最值的方法 ①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a0,y有最小值,当x=- 时,y最小值= ,若a0 a0 ab0 c0 抛物线与x轴有2个交点; Δ=0 抛物线与x轴有1个交点; Δ。
7.二次函数两点式是什么
1.二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点. (2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和 x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).2.二次函数解析式的确定 确定二次函数解析式,一般仍用待定系数法.由于二次函数解析式有三个待定系数a、b、c(或a、h、k或a、x1、x2),因而确定二次函数解析式需要已知三个独立的条件.当已知抛物线上任意三个点的坐标时,选用一般式比较方便;当已知抛物线的顶点坐标时,选用顶点式比较方便;当已知抛物线与x轴两个点的坐标(或横坐标x1,x2)时,选用两根式较为方便. 注意:当选用顶点式或两根式求二次函数解析式时,最后一般都要化一般式. 3.二次函数y=ax2+bx+c的图像 二次函数y=ax2+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线. 4.二次函数的性质 根据二次函数y=ax2+bx+c的图像可归纳其性质如下表: 函数 二次函数y=ax2+bx+c(a,b,c是常数,a≠0) 图 像 a>0 a- 时,y随x的增大而增大. (4)抛物线有最低点,当x=- 时,y有最小值,y最小值= . (1) )抛物线开口向下,并向下无限延伸. (2)对称轴是x=- ,顶点坐标是(- , ). (3)当x- 时,y随x的增大而减小. (4)抛物线有最高点,当x=- 时,y有最大值,y最大值= . 5.求抛物线的顶点、对称轴、最值的方法 ①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a0,y有最小值,当x=- 时,y最小值= ,若a0 a0 ab0 c0 抛物线与x轴有2个交点; Δ=0 抛物线与x轴有1个交点; Δ。