一元二次方程的掌握知识点

1.一元二次方程的知识点是什么

结合抛物线图形及解析式来理解.几种形式之间的转换关系.根与系数之间的关系.1.一般式:y=ax^2+bx+c. a>0则开口向上,adelta=b^2-4ac=a^2(x1-x2)^2大于0则2相异实根(曲线与X轴相交),等于0则2等实根(曲线与X轴相切),小于0则无实根(曲线与X轴无交点).2.:y=a(x-h)^2+d. h=-b/(2a), d=c-ah^2=(4ac-b^2)/(4a), 由一般式直接配方而来.顶点为(h, d),a>0时为最小值,ax=h为曲线的对称轴.若有两根分别在对称轴的两边ad0则无实根.3.式:y=a(x-x1)(x-x2)x1+x2=-b/a, x1x2=c/a, 两根同号则c/a>0, 两根异号则c/a两正根则-b/a>0, 两负根则-b/a 用户 2016-11-30 举报。

2.一元二次方程的知识要点

定义:在一个等式中,只含有一个未知数,且未知数的最高次数的是2次的整式方程叫做一元二次方程。

一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高项的次数和是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)

基本知识讲解:

1. 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

即一个一元二次方程必须满足以下三个条件:(1)方程是整式方程;(2)它只含有一个未知数;(3)未知数的最高次数是2。

2. 一元二次方程的一般形式是:ax2 +bx+c=0(a≠0),任何一个一元二次方程都可以化为一般形式,其中ax2称为二次项,a称为二次项系数,bx称为一次项,b称为一次项系数,c称为常数项。

3.初三数学,一元二次方程知识点

一元二次方程知识点

教学重点:根的判别式定理及逆定理的正确理解和运用

教学难点:根的判别式定理及逆定理的运用。

教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。 主要知识点:

一、一元二次方程

1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:ax2bxc0(a0),它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

二、一元二次方程的解法

1、直接开平方法:

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(xa)2b的一元二次方程。根据平方根的定义可知,xa是b的平方根,当b0时,xab,xab,当b<0时,方程没有实数根。

2、配方法:

配方法的理论根据是完全平方公式a22abb2(ab)2,把公式中的a看做未知数x,并用x代替,则有x22bxb2(xb)2。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

3、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程ax2bxc0(a0)的求根公式:

xbb4ac

2a2(b4ac0) 2

公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

三、一元二次方程根的判别式

根的判别式

一元二次方程ax2bxc0(a0)中,b24ac叫做一元二次方程22axbxc0(a0)的根的判别式,通常用“”来表示,即b4ac I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△<0时,一元二次方程没有实数根

四、一元二次方程根与系数的关系

如果方程ax2bxc0(a0)的两个实数根是x1,x2,那么x1x2

x1x2caba,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方

程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

五、一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

4.一元二次方程的知识要点

定义:在一个等式中,只含有一个未知数,且未知数的最高次数的是2次的整式方程叫做一元二次方程。

一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高项的次数和是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)

基本知识讲解:

1. 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

即一个一元二次方程必须满足以下三个条件:(1)方程是整式方程;(2)它只含有一个未知数;(3)未知数的最高次数是2。

2. 一元二次方程的一般形式是:ax2 +bx+c=0(a≠0),任何一个一元二次方程都可以化为一般形式,其中ax2称为二次项,a称为二次项系数,bx称为一次项,b称为一次项系数,c称为常数项。

5.一元二次方程的解题思路和一般步骤尽量有例题.讲得尽可能详细

一般解法 1..配方法(可解所有一元二次方程) 2.公式法(可解所有一元二次方程) 3.因式分解法(可解部分一元二次方程) 4.开方法(可解部分一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式) 一、知识要点: 一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基 础,应引起同学们的重视. 一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程. 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解 法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法. 二、方法、例题精讲: 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9×2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程也可用直接开平方法解. (1)(3x+1)2=7* ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2) 9×2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3×2-4x-2=0 将常数项移到方程右边 3×2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b^2-4ac≥0)就可得到方程的根. 例3.用公式法解方程 2×2-8x=-5 将方程化为一般形式:2×2-8x+5=0 ∴a=2, b=-8, c=5 b^2-4ac=(-8)2-4*2*5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根.这种解一元二次方程的方法叫做因式分解法. 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2×2+3x=0 (3) 6×2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,×2=-2是原方程的解. (2)2×2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,×2=-是原方程的解. 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解. (3)6×2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解. (4)x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解. 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数. 直接开平方法是最基本的方法. 公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解. 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方 法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法). 例5.用适当的方法解下列方程.(选学) (1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0 (3) x2-2 x=- (4)4×2-4mx-10x+m2+5m+6=0 分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差 公式分解因式,化成两个一次因式的乘积. (2)可用十字相乘法将方程左边因式分解. (3)化成一般形式后利用公式法解. (4)把方程变形为 4×2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解. (1)4(x+2)2-9(x-3)2=0 [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0 (5x-5)(-x+13)=0 5x-5=0或-x+13=0 ∴x1=1,×2=13 (2) x2+(2- )x+ -3=0 [x-(-3)](x-1)=0 x-(-3)=0或x-1=0 ∴x1=-3,×2=1 (3)x2-2 x=- x2-2 x+ =0 (先化成一般形式) △=(-2 )2-4 *=12-8=4>0 ∴x= ∴x1=,x2= (4)4×2-4mx-10x+m2+5m+6=0 4×2-2(2m+5)x+(m+2)(m+3)=0 [2x-(m+2)][2x-(m+3)]=0 2x-(m+2)=0或2x-(m+3)=0 ∴x1= ,x2= 例6.求方。

6.一元二次方程知识点详细讲解

结合抛物线图形及解析式来理解。几种形式之间的转换关系。根与系数之间的关系。

1.一般式:y=ax^2+bx+c. a>0则开口向上,a 判别式delta=b^2-4ac=a^2(x1-x2)^2

大于0则2相异实根(曲线与X轴相交),等于0则2等实根(曲线与X轴相切),小于0则无实根(曲线与X轴无交点)。

2.顶点式:y=a(x-h)^2+d. h=-b/(2a), d=c-ah^2=(4ac-b^2)/(4a), 由一般式直接配方而来。

顶点为(h, d),a>0时为最小值,a x=h为曲线的对称轴。若有两根分别在对称轴的两边

ad0则无实根。

3.因式分解式:y=a(x-x1)(x-x2)

x1+x2=-b/a, x1x2=c/a,

两根同号则c/a>0, 两根异号则c/a 两正根则-b/a>0, 两负根则-b/a

%title插图%num