函数与方程的知识点

1.高中函数方程知识点总结 及重点

一、函数的概念与表示

1、映射

(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素 ①定义域②对应法则③值域

两个函数是同一个函数的条件:三要素有两个相同

二、函数的解析式与定义域

1、求函数定义域的主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

三、函数的值域

1求函数值域的方法

①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 ∈R的分式;

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

四.函数的奇偶性

1.定义: 设y=f(x),x∈A,如果对于任意 ∈A,都有 ,则称y=f(x)为偶函数。

如果对于任意 ∈A,都有 ,则称y=f(x)为奇

函数。

2.性质:

①y=f(x)是偶函数 y=f(x)的图象关于 轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,

②若函数f(x)的定义域关于原点对称,则f(0)=0

③奇±奇=奇 偶±偶=偶 奇*奇=偶 偶*偶=偶 奇*偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]

3.奇偶性的判断

①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系

五、函数的单调性

1、函数单调性的定义:

2 设 是定义在M上的函数,若f(x)与g(x)的单调性相反,则 在M上是减函数;若f(x)与g(x)的单调性相同,则 在M上是增函数。

2.什么是方程与函数思想

函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路

.

和函数有必然联系的是方程,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量.这就是方程的思想,方程思想是动中求静,研究运动中的等量关系.

就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.

比如,对于满足0≤p≤4的一切实数,不等式x。x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的.

如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的.又如,

已知(3×4+7×3+4×2-7x-5)5·(3×4-7×3+4×2+7x-5)5=a0+a1x+a2x2+…+a40x40,试求a0+a2+a4+…+a40的值.此题的第一感觉,可能会联想到二项式定理,但是仔细观察会发现左边并不是某两个二项式的展开式.但比较一下对应项的系数,不难发现,它们的偶次幂项的系数都相等,而x的奇次幂项的系数互为相反数,联想到函数的奇偶性便不难解决.

在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用函数的观点和方法解决常见数学问题的解题规律。在解题中,充分、合理地运用函数与方程的思想方法,会产生意想不到的效果。

数学里的函数与编程里的函数在本质上是一致的。函数是一个透明与不透明范畴的概念,有了函数,就可以在只知道要实现的功能的情况下调用该函数,而不需要知道具体的映射关系。要解决这个映射关系就是这个函数内部所要做的。

方程是建立等价的关系,由这个或这些等价关系做出进一步推断,与函数有质的区别。

3.初三所有函数的公式

什么是函数公式?叫一般表达式吧.一次函数:y=kx+b 正比例:y=kx 反比例:y=k/x(k≠0)二次函数:y=ax^2+bx+c y=a(x+m)^2+n y=a(x-x1)(x-x2) y=a(x-m)(x-n)+b(上述a≠0 x1x2为函数与x轴交点 m、n为函数与直线y=b交点) 二次函数对称轴:x=-b/2a 极值:(4ac-b^2)/4a还有圆的函数解析式 不知道需不需要 (x-a)^2+(y-b)^2=r^2 (a,b)为圆心坐标 r为半径。

4.所有函数知识点归纳总结 初中的

函数及其图像 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。

二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)2、坐标轴上的点的特征 在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上 x与y相等 点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征 点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称 横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离:(1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于 三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数的三种表示法(1)解析法(2)列表法(3)图像法3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线4、自变量取值范围 四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。特别地,当一次函数 中的b为0时, (k为常数,k 0)。

这时,y叫做x的正比例函数。2、一次函数的图像:是一条直线3、正比例函数的性质,,一般地,正比例函数 有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

4、一次函数的性质,,一般地,一次函数 有下列性质:(1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小5、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。

解这类问题的一般方法是待定系数法。6、设两条直线分别为, : : 若 且 。

若 7、平移:上加下减,左加右减。8、较点坐标求法:联立方程组 五、反比例函数 1、反比例函数的概念 一般地,函数 (k是常数,k 0)叫做反比例函数。

反比例函数的解析式也可以写成 或xy=k的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像是双曲线。3、反比例函数的性质(1)当k>0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。 (2)当k<0时,函数图像的两个分支分别在第二、四象限。

在每个象限内,y随x 的增大而增大。(3) 图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

(4)图像既是轴对称图形又是中心对称图形 (5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|4、反比例函数解析式的确定 只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。六、二次函数 1、二次函数的概念:一般地,如果 ,那么y叫做x 的二次函数。

2、二次函数的图像是一条抛物线。3、二次函数的性质:(1)a>0抛物线开口向上,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x 时,y随x的增大而增大;抛物线有最低点,当x= 时,y有最小值, (2) a<0抛物线开口向下,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x 时,y随x的增大而减小,;抛物线有最高点,当x= 时,y有最大值, 4、.二次函数的解析式有三种形式:(1)一般式: (2)顶点式: (3)两根式: 5、抛物线 中, 的作用: 表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下 与对称轴有关:对称轴为x= ,a与b左同右异 表示抛物线与y轴的交点坐标:(0, )6、二次函数与一元二次方程的关系 一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。当 >0时,图像与x轴有两个交点;当 =0时,图像与x轴有一个交点;当 <0时,图像与x轴没有交点。

7、求抛物线的顶点、对称轴的方法 (1)公式法:顶点是 ,对称轴是直线 . (2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .8、平移: 可以由 平移得到。上加下减,左加右减。

不谢。

5.六年级数学式与方程知识点总结

知识点:

用字母表示数

1、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式。

(1)用字母表示数量关系 路程用s表示,速度v用表示,时间用t表示,三者之间的关系: s=vt v=s/t t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系: a=bc b=a/c c=a/b

(2) 运算定律和性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c) =a-b-c

(3)表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示:

c=2(a+b) s=ab

正方形的边长a用表示,周长用c表示,面积用s 表示:

c=4a s=a

平行四边形的底a用表示,高用h表示,面积用s表示:

s=ah

三角形的底用a表示,高用h表示,面积用s表示: s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,面积用s表示:s= (a+b)h/2 圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示:

c=2πr d=2r s=π2r

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示:

v=sh ;s=2(ab+ah+bh) ;v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示: s=6a;v=3a

圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示:

s侧=ch ;s表=s侧+2s底;v=sh 圆锥的高用h 表示,底面积用s表示,体积用v表示:v=sh/3 2

用字母表示数的写法

(1)数字和字母,字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。

(2)当“1”与任何字母相乘时,“1”省略不写

(3)将数值代入式子求值 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。 简易方程简易方程简易方程简易方程:含有未知数的等式叫做方程。

%title插图%num