相似图形的知识点总结百度文库

1.求于相似图形相似三角形所有相关知识点.要详细.有例题更好

把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 (或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比 即为 ,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1) 定义:对应角相等,对应边成比例的两个三角形相似;(2) 平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3) 如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4) 如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5) 如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6) 直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1) 对应角相等,对应边的比相等;(2) 对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3) 相似三角形周长之比等于相似比;面积之比等于相似比的平方. 好吧我百度的。

2.求于相似图形相似三角形所有相关知识点.要详细.有例题更好

把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 (或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比 即为 ,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1) 定义:对应角相等,对应边成比例的两个三角形相似;(2) 平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3) 如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4) 如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5) 如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6) 直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1) 对应角相等,对应边的比相等;(2) 对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3) 相似三角形周长之比等于相似比;面积之比等于相似比的平方. 好吧我百度的。

3.相似三角形的所有知识点

所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。

三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

相似三角形的判定方法有:

平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似,

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,

如果两个三角形的三组对应边的比相等,那么这两个三角形相似 ,

直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。

直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理

相似三角形的性质

1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方。

4.相似三角形的知识点

一、相似三角形的概念

对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。

二、相似三角形的基本定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

三、三角形相似的判定

1、三角形相似的判定方法

①、定义法:对应角相等,对应边成比例的两个三角形相似

②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似

2、直角三角形相似的判定方法

①、以上各种判定方法均适用

②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

5.归纳相似图形的物体写活动心得哪样写

在华师大版数学八年级(下)第18章《图形的相似》第5节第2课时。

本章继轴对称、平移、旋转后介绍了相似,相似也是图形之间的一种变换,生活中有大量存在相似图形,从生活实际出发,认识相似图形的特征并用于解决一些简单的实际问题,让学生体会图形经过平移、旋转、轴对称、相似变换后坐标的变化情况。加深对图形的认识,初步体会数形结合的思想。

2、教学目标 知识目标:在同一直角坐标系中,感受图形变化后各点坐标的变化和图形的变化(平移、轴对称、旋转、放大、缩小);并发展学生数形结合的思想。 能力目标:培养学生的观察能力和动手能力。

情感态度目标:在观察、探索的过程让学生获得发现的喜悦,体验数学活动中充满着探索和创造;引导学生敢于面对学习和生活中的困难和挫折,培养坚强的意志品质。 3、教学重点和难点 重点:同一直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小,探索图形的位置变化引起的点的坐标的变化,点的变化引起的图形的位置的变化。

难点:通过观察、分析、概括把坐标思想与图形变换的思想联系起来,形成数形结合意识。 二、学情分析 1、学生起点分析 八年级下学期的学生已具有图形的平移、旋转、轴对称、相似等变化知识储备,同时已学过建立适当的坐标系来描述物体的位置,能结合具体情景,灵活运用多种形式确定物体的位置,这也是为本节学习图形变化后各点坐标变化带来了知识的可能,但缺乏数形结合意识,所以应加以引导、点拨和启发。

2、教学环境分析 本节是设计在一个平等、民主、合作的环境下进行;同时引入现代教学手段,形成教学环境的选择的多样化。 三、教学方法、手段 教学方法:探索式教学方法。

整个教学过程是由问题展示到问题解决,中间围绕“观察—-发现—-归纳”三个环节组织教学。整个教学模式是由“教师怎么教”转向“学生怎么学”,是从以教师为课堂核心转变为以学生发展为核心,是创新的体现。

教学手段:电脑、实物投影仪等现代教学设备。 四、学法指导 1、感知认识:学生通过认识图形的位置变化引起点的坐标的变化,本节从游戏导入点的位置变化引起坐标的变化 2、实践、探索:通过实例进一步观察图形经过平移、旋转、轴对称、放大或缩小,探索位置变化引起的点的变化经过小组讨论,团结合作,发现、归纳、总结规律。

同时每一个学生自己试一试在直角坐标系中画一个自己喜欢的一个图形,并写出图形变化后对应点的坐标,达到巩固目的。 3、迁移拓展:怎样用所学的知识测量我校旗杆的高度。

(承上启下的作用) 五、理论依据、数学思想 1、理论依据:本节在教学中采用以学生的发展为核心,让学生真正做到课堂的主人,整节是围绕学生的观察感知,实践,概括把坐标思想与图形变化的思想联系起来。 2、数学思想:本节发展数形结合,形象思维的数学思想。

第二层次:教学展开分析 (一)课题引入:设计一个简单游戏,在班级座位中创造性地建立直角坐标系,确定每位同学在这个坐标系中的位置,接着将一个球按线在班级坐标系中运动,引导学生去发现这个球的移动对坐标变化的影响,并由此过度到图形变化中关键点的坐标变化。这样的设计能较为生动的引导学生进入本节课的教学情景中,同时也能感受将“游戏问题转化为数学问题”的过程。

(二)感知阶段: 例:将右图中的ΔAOB沿x轴向右平移3个单位后得到ΔCDE,三个顶点的坐标有什么变化呢?请回答(1)平移后ΔCDE顶点坐标为多少?(2)比较顶点坐标你发现了什么? (沿X轴向右平移之后,三个顶点纵坐标都没有改变,而横坐标增加一样数) 问:1、沿任意方向平移三角形顶点坐标怎么变化? 2、图形作轴对称、旋转、放大或缩小,对应点坐标如何变化? 设计意图:使学生明确本节是研究图形变化对应点坐标如何变化,从平移入手,懂得研究的方法;老师的提问为学生指明方向。但得让学生明确平移方向不是唯一。

(三)深入探究:演示课件 1、请学生观察ΔAOB,画出以X轴,Y轴为对称轴的对称图形,写出了对应点的坐标,四人小组讨论对应点的变化情况,并汇报,(关于X轴对称,横坐标不变纵变为相反数,关于Y轴对称,纵坐标不变横变为相反数) 2、请学生继续观察ΔAOB,画出绕O旋转1800的图形写出了对应点坐标,四人小组讨论对应点坐标变化情况,并作汇报。问旋转任意角度呢?对应点的坐标作如何变化?(留给学生思考) (图形关于原点对称,横纵皆为相反数) 3、三角形变大(缩小)时顶点坐标变化情况。

问:(1)ΔAOB和它缩小后得到ΔCOD三角形顶点是多少? (2)你能求出它们的相似比吗?(3)对应点的坐标有什么关系? (放大或缩小,横坐标都扩大或缩小相同的倍数) 4、学生取出自己准备的坐标纸建立直角坐标系,并任意画出自己所熟悉喜欢的图形,画出以X轴Y轴对称的对称图形作出它经过平移、旋转、轴对称、放大或缩小的图形并写出对应点的坐标。 5、完成课堂练习P91习题1、2 设计意图:让学生自己动手、观察,动脑,与同学合作交流达到本节目标。

使学生明确图形运动与坐标变化规律,解决本节重点问题。培养学生的。

6.八年级下册数学书相似图形复习题

北师大八年级数学下册第四章《相似图形》(三)一、填空题1、两个三角形相似,其中一个三角形两个内角分别是 ,那么另一个三角形的最大角为 ,最小角为 。

2、如图,△ABC∽△ADE,AE=3,EC=5,DE=1.2,则BC的长度为 。3、如2题图,△ABC∽△ADE,AD=3,AB=5,则DE :BC= 。

4、如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是 。5、如图,DE∥FG∥BC,图中相似三角形共有 对。

6、仿4题图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC= ,AC=3,则CD的长为 。7、在△ABC中,∠BAC= ,AD⊥BC于D,BD=3,AD=9,则CD= ,AB :AC = 。

8、直角三角形的两条直角边分别为 ,则它的斜边上的高与斜边之比为 。9、在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,若要在AB上找一点E,使△ADE与原三角形相似,那么AE= 。

二、选择题10、在△ABC和△A B C 中,∠A=68 ,∠B=40 ,∠A =68 ,∠C =72 ,这两个三角形( )A、既全等又相似 B、相似 C、全等 D、无法判定11、下列说法正确的是( )A、相似三角形一定全等 B、不相似的三角形不一定全等C、全等三角形不一定是相似三角形 D、全等三角形一定是相似三角形12、等腰三角形ABC和DEF相似,其相似比为3:4,则它们底边上对应高线的比为( )A、3:4 B、4:3 C、1:2 D、2:113、下列命题中正确的是( )①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似A、①③ B、①④ C、①②④ D、①③④14、下列命题中的真命题是( )A、两个等腰三角形相似 B、两个直角三角形相似C、有一个锐角是30 的两个等腰三角形相似 D、有一个内角是30 的两个直角三角形相似三、解答题15、如图, (1) ∽ 吗?说明理由。(2)求AD的长。

16、如图,在正方形ABCD中,E为AD的中点,EF⊥EC交AB于F,连接FC △AEF∽△EFC吗若相似,请证明;若不相似,请说明理由。若ABCD为矩形呢?17、在右图中,方格纸中每个小格的顶点叫格点,以格点连线为边的三角形叫格点三角形。

请你在图中画出两个相似但不全等的格点三角形(不是直角三角形)。并加以证明。

7.《相似三角形》这一章的总结

所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。

三角对应相等,三边对应成比例的两个三角形叫做相似三角形。相似三角形的判定方法有:平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,如果两个三角形的三组对应边的比相等,那么这两个三角形相似 , 定理直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。

直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 相似三角形的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。

8.初二下学期数学相似三角形的总结归纳

所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。

三角对应相等,三边对应成比例的两个三角形叫做相似三角形。 相似三角形的判定方法有: 平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似, 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似, 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似, 如果两个三角形的三组对应边的比相等,那么这两个三角形相似 , 定理 直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。

直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 相似三角形的性质 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方。

%title插图%num