1.六年级数学圆的知识归纳
1、圆:圆是由一条曲线围成的平面图形。
(长方形、梯形等都是由几条线段围成的平面图形)
2、半径:一端在圆心,一端在圆上的线段叫半径。在同一圆里,半径有无数条,条条都相等。
3、直径:通过圆心,两端都在圆上的线段叫直径。在同一圆里,直径有无数条,条条都相等。
在同一圆里,直径长是半径长的2倍。(d=2r, r=d÷2)
4、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
5、圆心决定圆的位置,半径决定圆的大小。
6、正方形里最大的圆。两者联系:边长=直径
7、长方形里最大的圆。两者联系:宽=直径
8、直径是圆里最长的线段
11、半圆的周长等于圆周长的一半加一条直径。
14、半圆的面积是圆面积的一半。S半=πX r的平方÷2
15、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数2倍
16、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
17、三个顶点都在圆上,且有一条边是直径的三角形一定是直角三角形。
应用这条规律可以找出圆的直径和圆心。
(1)以圆上的一个点为顶点画一个直角
(2)连接角的两边与圆的两个交点,这条就是直径
2.小学六年级上册数学圆的知识点
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:libin051125
一、圆的认识1、日常生活中的圆2、画图、感知圆的基本特征(1)实物画图(2)系绳画图3、对比,感知圆的特征:我们以前学过的长方形、正方形、平行四边形、梯形、三角形等,都是曲线段围成的平面图形,而圆是由曲线围成的一种平面图形。【归纳】:圆是由一条曲线围成的封闭图形二、圆的各部分名称1、圆心:用圆规画出圆以后,针尖固定的一点就是圆心,通常用字母O表示,圆心决定圆的位置2、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。3、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段三、圆的主要特征1、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/23、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。圆是轴对称图形且有无数条对称轴一、圆的周长的认识1、围成圆的曲线的长叫做圆的周长2、周长与圆的直径有关,圆的直径越长,圆的周长就越大二、圆周率的意义及圆的周长公式1、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做
3.6年级圆的知识点总结(所有公式)例题
圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。
圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小
圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴
同一圆中直径是半径的2倍
圆的周长指围成圆的曲线的长。直径大的圆周长就大,直径小的圆周长就小
圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14
圆的周长:C=2πr或C=πd
求半径:r=C/2π
求直径:d=C/π
圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积
面积计算公式:π*r的平方
圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方)
(R是大圆半径,r是小圆半径
4.6年级圆的知识点总结(所有公式)例题
圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。
圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小 。 圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴 。 同一圆中直径是半径的2倍 圆的周长指围成圆的曲线的长。
直径大的圆周长就大,直径小的圆周长就小 圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14 圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π 圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积 。 面积计算公式:π*r的平方 圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方) (R是大圆半径,r是小圆半径。
5.求初中数学圆的知识点(最好带图)
1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交 dr 22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1 经过圆心且垂直于切线的直线必经过切点25、推论2 经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离 d>R r ②两圆外切 d=R r ③两圆相交 R-rr) ④两圆内切 d=R-r(R>r) ⑤两圆内含 dr) 36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)*180°/n 40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pnrn/2 p表示正n边形的周长42、正三角形面积√3a/4 a表示边长43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k (n-2)180°/n=360°化为(n-2)(k-2)=4 44、弧长计算公式:L=n兀R/180 45、扇形面积公式:S扇形=n兀R^2/360=LR/2 46、内公切线长= d-(R-r) 外公切线长= d-(R r)。
6.关于六年级数学,圆的知识
把一个圆平均分成若干份,如果分的分数越多,拼成的图形就越接近于长方形,拼成的长方形的面积与圆的面积( 一样),圆的半径(r)是长方形的(宽 ),圆周长的一半(二分之C)是长方形的( 长+宽),
(我知道对于各位来说很简单,但是我真的一点都没听进去,所以我真的想努力突破,进入好初中学校,请各位帮帮我好吗?谢谢,)
因为长方形的面积=长*宽,所以圆的面积=( 半径的平方)*( 3.14)=πr的平方,
一个圆为六cm直径,求面积, 一个半径为五cm的圆,求面积,(我周长和面积不太懂,可不可以说一下过程与过程了解啊?比如圆是六cm直径,那么周长就是3.14*6对吗?那么面积呢?答得好会加分的, )
阳光小学有一个圆形花坛,周长是25.12m,这个花坛的占地面积是多少?没错周长等于3.14*直径
一个圆的面积是πr的平方,那么正方形的面积是( 边长的平方),圆的面积正好是正方形面积的( 2)倍,也就是圆的面积相当于它的半径的平方的( 1)倍,即圆的面积是( 25.12), 如果这个正方形的面积是9平方厘米,那么这个圆的面积就是( 18.86) , (是不是有点不太懂题意?其实这是有一幅图的,就是我不会制作这幅图,其实就是一个小正方形处于一个大圆的右上角那儿,超出去一点,正方形的边长等于这个大圆的半径,)
求阴影部分, 大圆直径8cm,小圆直径4cm, 大圆不知,小半圆(等于大圆的四分之一)有标个3cm,
判断, 半径是2厘米的圆,它的周长和面积相等, 对错? 周长相等的两个圆的面积不一定相等,对错?错! 圆周率是一个无限不循环小数,对错?对
王刚家有一张圆桌,量的直径是1m,这张圆桌的面积是多少平方米?如果在它的圆周上镶上一条花边,这条花边长是多少?1、面积等于0.5的平方*3.14 2、周长等于3.14*1
下面各图的阴影部分的面积相等吗?为什么?
图一,一个正方形边长四厘米,里面一个最大圆的四个角被剪了(左上角左下角,右上角右下角,) 图二,正方形四厘米,里面两个半圆,对面的, 图三,正方形四厘米,里面最大圆,其余阴影部分,
谢谢了,拜托,就只能今晚回答!明天失效了,今晚布置了这些我不会做的作业,
都怪我胡思乱想上课不认真听,还请详细讲解,特别是圆的周长和圆的面积! 只需告诉我如何计算(计算方法)和解题思路,就行了
7.六年级上册数学百分数和圆的知识点(简单一点)
百分数 1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用”%”来表示。百分号是表示百分数的符号。
2百分比虽以100为分母,但分子可以大于100,如200%即代表原本数字的2倍。举例如一间公司去年纯利100万元,今年的纯利为120万元,则可以表示成“今年的纯利比去年增加20%”,亦可写成“今年的纯利是去年的120%”,但这种写法较少使用。
百分比有时可能造成误会,不少人认为一个百分比的上升会被相同下降的百分比所抵消,例如从100增加50%,等于100+50,即150。而从150下降50%则是150-75,等于75。
最终结果是小于原本的数字100。 圆 一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。三、圆的基本性质。
1、圆的对称性。(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。(3)圆是旋转对称图形。
2、垂径定理。(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。29、平面直角坐标系中,A(x1,y1)、B(x2,y2)。
则AB= 10、圆的切线判定。(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
(2)切线长定理。∵ PA、PB切⊙O于点 A、B∴ PA=PB,∠1=∠2。
13、内切圆及有关计算。(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。 求:AD、BE、CF的长。
分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x. 可得方程:5-x+7-x=6,解得x=3(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。 求内切圆的半径r。
分析:先证得正方形ODCE,得CD=CE=r AD=AF=b-r,BE=BF=a-r b-r+a-r=c 得r= (4)S△ABC= 14、(补充)(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。 圆的两条弦AB与CD相交于点P,则PA•PB=PC•PD。
(3)切割线定理。如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB•PC。
(4)推论:如图,PAB、PCD是⊙O的割线,则PA•PB=PC•PD。15、圆与圆的位置关系。
(1)外离:d>r1+r2, 交点有0个; 外切:d=r1+r2, 交点有1个; 相交:r1-r2<d<r1+r2,交点有2个; 内切:d=r1-r2, 交点有1个; 内含:0≤d<r1-r2, 交点有0个。 (2)性质。
相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。
16、圆中有关量的计算。(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。
L= (2)扇形的面积用S表示。 S= S= (3)圆锥的侧面展开图是扇形。