负数的知识点汇总

1.谁知道正负数知识点总结

知识点】:

1、零下温度的表示方法,在温度前面写上“—”号,如“—2℃”“—12℃”通常读作零下2摄氏度、零下12摄氏度。

2、能够正确地比较两个零下的温度的高低:0℃和零上的温度高于零下的温度;零下温度的数字越大表示温度越低。

正负数

【知识点】:

1、正数:比0大的数字都是正数,有的时候我们在正数前面添上“+”号,如+5、+20等等,读作:正5、正20。

2、负数:比0小的数字都是负数,我们在负数前面提案上“—”号,如—2、—10等等,读作:负2、负10。

3、明确0既不是正数也不是负数。

能用正数、负数表示实际问题,要确定以什么作为标准(即以什么作0点)

2.人教版六年级负数的知识,全面的

第一单元第一单元“负面”容易出错的知识总结,行使“负面”易错知识总结和练习,知识总结 负的定义,学会了所有的数字(0除外)是积极的,是正面的“+”可以省略,以写!负的定义:在前面的正加“ – ”是负的。

3,消极的,必须在前面加上“ – ”如果前面是不是“ – ”(可能是无符号“+”)是正数(0除外)。 4,0既不是正面的,不属于否定的,它是正数和负数的界限。

练习:1,以下5 1 1 1.25,-7,3,3.011的要求。

-5,0,2,-0.03 3 2 7 正数2,写的数量以下的相对负负 自然数 非正,数形式 3 1 7,7,3,2 + 0.33 。

5 3 19 2,负的作用的一个负数是在正方向是任意定义的。如图2所示,使用一个负数来表示的量和相反的正的意义。

3,由一个正的或负的数表示的是,选择的,第一,以查看是否预定的正方向。 4,一般含有作为一个正数,表示的量由负贬义褒义词表达量。

例:5°以上零+5℃-5℃-5℃。收入2000元,2000元;消费满500元-500元说。

做法:1,+20%,同比增长20%-20%的什么? 2,有一天晚上,零上午,黄山气温摄氏2度下降摄氏7度,今天晚上黄山的温度,正常蓄水位为0时,水位高于正常水位记录为_____________ 0.2以下正常水位0.3米和记______________。 正常水位为5米,水位正常水位记录2.5米如下6.3米记录。

摄氏度。 4,在符合要求的答案:一个学生示范,老师提出的要求,是积极的向前发展。

(1)第2步向前_________________。 (2)向后走一步表示为_________________。

(3)“记录一步一步如何”他应该去吗?记录为-4步骤? 5,图的答案 GMT,东京1小时的早期,+1; 7个小时后,巴黎时间,记为-7。北京的时间是在其他时区的标准时间。

悉尼时间:____________伦敦时间:______________ 6,判断题(1)可以被看作是一个正数,它可以被看作是负((2)海拔-155米表示海平面155米以下()) BR />(3)如果利润1000元,记为千元,则可以记录为亏损200万元-200万元((4)温度0°C的温度() BR />) 7常见的负数(1)上图:中国地形图负数的意义,你可以看到中国有世界上最高的山峰 – 珠穆朗玛峰,图表,标志着8848,吐鲁番盆地在上的地图上标注155米的西北,你可以谈论8848米,155米,每说什么?这两个高,低,谁??的标准呢? (2)收入和支出收入:2600,()教育支出:300万()娱乐支出:500元()。 (3)电梯负-3层是什么意思呢?根据世界卫生组织的标准呢?开始上学时,去东去西负,小明从学校去+50米,100米,小明从学校的距离()。

9,食品包装经常说:“净重500±5g的,标准的食品质量是()实际上根本不包以上(),至少不低于()。负读数和写,读法:在前面的读数和“负面”,写着:加“ – ”前面的书面练习:在摄氏16度以上零至零下3摄氏度四,认识轴1,轴元素:一个积极的方向(由箭头表示),在原点(0刻度上),单位长度(标度)。

2,积极的方向发展:根据题意要求确定正方向,一般向上或向右为正方向。 3,产地:编号为0的位置,一般所说的数字是确定的,如果你需要的起源来表示正数和负数,几乎等于号线在中间的原产地留下了很多正面多于负面;负比更积极的起源权。

如图4所示,单位长度:所表示的大小的刻度之间的距离来决定的大小,如果数字大规模的距离可以适当地小,如果数字小规模的距离可以适当地大量。单位长度不一定只能表示每个尺度。

例如:写作积极的方向:(写作:( )或() ) 读作:读作: -4 BR /> -3 单位长度 -2 -1 出身,与数轴表示数字1,数字已表示相应规模的轴数:积点的数字。 22非整数:规模进一步细分,例如,需要是0-1之间的段被分成三个相等的部分的两个分部的数目。

33对于负:负数是0的左侧,右侧的0的正数。实施例:3.5 3和4,中间体,和-3.5 -3和-4中间。

做法:1,数轴数1 1.75 -4 3 4 0 -3.2 2,写出下列数量的AB -8 -6 -4 -2 ?的D 0 2 4 F 6 8 G 10 6,根据左轴相对大小的数目1,0为负,而0上的右边的数字是一个正数;所有正面多于负面;所有负数小??于阳性,在轴的数目较大的权数,由较小的数的左边; 3,大小为负,不考虑负号,但一个小的数字部分号码; 4,0大于所有的负面,就是少不是所有的正数。做法:1,规模比较-6.5 -6.6 1.5 4 7 0 9 7 -9.8 2 负 0 3 8 -0.05 3 5 0.5 -2.75 1 10 5 8 +2.75 -0.1 -2.5 -3.5 – -10.1 1.01 -0.5 0.625 2,数轴表示数,按从小到大的顺序5 -3.5 -1.75 1.25 0 -2 1 2 填写的适当括号中的数字。

①5,2,-1,-4,(),()) ②-10,-5,0,5,10,( ),( 第一台机组自试题 填写下面的空白写温度计显示的温度如何读 层以下的建筑,地上5楼记录作为第二层的表面(5层以下)的表面第一层,记为(3台车,36米记36米返回10米表示为()米。记录,成为世界上最深的马里亚纳海沟最深处超过海平面年底11034米,记为()米为(读取)。

)层。 5。

的变化,水库的水位记录。上升7米表示7厘米,说剩下的4个记录。

上升7 + 7厘米的绿色学校的东走80米,记录80米,走100米再往西,然后记录作为她的学校()的距离,你知道,如果在生活中,水结冰的温度()℃低于水的沸点温度(℃)。两个判断。

3.负数的知识点 快点就今天晚上要用

知识点1 负数的引入正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6 和零下 等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。

用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。知识点2 正数和负数的概念像3、1.5、、58等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。

像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。负数比0小。

零即不是正数也不是负数,零是正数和负数的分界。注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+ 。

(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。例如:-a一定是负数吗?答案是不一定。

因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。

4.正数和负数的总结

先前的回答都是有调理的,感谢他的工作。我举个例子吧,正数和负数的区别只是一种标准的选择以及定义问题(不理解以后再看),比如海平面,高于的是+X meter,低于的是-Y meter,一个区分而已,如果你从X地看Y地,那么相对距离丨X-Y丨或许更为重要些。

就如商业利润的计算一样,一般是亏了记为-,盈利记为+,但是如果本要亏A,却亏了B(B<A),实际上不是盈利了丨A-B丨吗?

如果我定义1是正数与负数的分界线,并约定正数与其相反数的和为2,即为定义界限数的两倍,不就是一种一一对称的关系么?

5.【七年级上册数学知识点归纳】

七年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数.知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.知识点11: 乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1. 倒数概念2. 如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1. 乘方的概念,乘方的结果叫什么?2. 认识底数,指数3. 正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念? 注意a的范围。

6.关于正数负数的知识求点不为人知的数学秘密,快

1、对于正数和负数的概念,不能简单的理解为:带“ ”号的数是正数,带“-”号的数是负数。

例如:“-a” 一定是负数吗?答案是不一定。因为字母a可以表示任意的数。

若a表示正数时,是负数;当a表示0时, 即使在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,“-a”就不是负数了,它是一个正数。 2、引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5… 3、数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4、通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。负数 我国在《九章算术》《方程》章中就引入了负数(negative number)的概念和正负数加减法的运算法则。

在某些问题中,以卖出的数目为正(因是收入),买入的数目为负(因是付款);余钱为正,不足钱为负。在关于粮谷计算中,则以加进去的为正,减掉的为负。

“正”、“负”这一对术语从这时起一直沿用到现在。 在《方程》章中,引入的正负数加法法则称为“正负术”。

正负数的乘除法则出现得比较晚,在1299 年朱世杰编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确。在“明乘除段”中有“同名相乘为正,异名相乘为负”之句,也就是(±a)*(±b)= ab,(±a)*( b)=-ab,这样的正负数乘法法则,是我国最早的记载。

宋末李冶还创用在算筹上加斜划表示负数,负数概念的引入是中国古代数学最杰出的创造之一。 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。

16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。

帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。

他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。

问何时父亲年龄将是儿子的二倍?”他列方程56 x=2(29 x),并解得x=-2。他称此解是荒唐的。

当然,欧洲18世纪排斥负数的人已经不多了。 随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。

印度人最早提出负数的是628年左右的婆罗摩笈多(约598-665)。他提出了负数的运算法则,并用小点或小圈记在数字上表示负数。

在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250)。 他在解决一个盈利问题时说∶我将证明这个问题不可能有解,除非承认这个人可以负债。

15世纪的舒开(1445?-1510?)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”。 韦达知道负数的存在,但他完全不要负数。

笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无”更小。

7.谁有负数的认识教案

负数的认识教学目的:1、在熟悉的生活情境中,了解负数的意义,会用负数表示生活中的天气问题。

2、会比较两个零下温度的高低。教具准备:多媒体课件教学重点:能用负数表示具有相反意义的量。

教学难点:1、负数的意义; 2、用负数表示具有相反意义的量。 3、会比较两个零下温度的高低。

教学过程:一、导入新课同学们,在放寒假的时候,老师去哈尔滨参加了那里的冰雪节,在那里我拍摄了好多美景,想欣赏一下吗?(欣赏图片)能作出这么美的冰雕让人欣赏并保持很长时间,你们想象一下哈尔滨的气温会怎么样?(很冷)同学们说的对,老师记录下了哪天的气温,你们来看,(看课件)哪天的气温是2–15℃。你们认识这个数吗?这就是我们要研究的——正数负数。

(板书课题)二探索新知1出示史料,进一步了解负数的历史。(师结合课件介绍) “中国是世界上最早认识和应用负数的国家。

早在两千多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中,以收入钱为正,以支出钱为负。

在粮食生产中,以产量增加为正,以产量减少为负。古代的人们为区别正、负数,常用红色的算筹表示正数、黑色的算筹表示负数。

而西方国家认识正、负数比咱们中国晚了数百年。” 2建立正负数的概念(1)气温中的正数和负数北京的最高温度是零上5度,北京的最低温度是零下5度,谁能读出其他城市的最高温度和最低温度?这几座城市中北京,哈尔滨的最高温度,最低温度可以记作:北京-5℃和5℃哈尔滨 -12~3 ℃.出示表格1提问:你知道像上面的数叫什么?正数 +5怎么读? 读作:正5你知道像下面的数叫什么?负数 +5怎么读? 读作:负52请你读读上面各数. 问:加号、减号和过去的意义相同吗?在这里加号叫做正号,减号叫做负号。

3为了简单可以把+5简写成5。如果去掉正号,这些数你们熟悉吗?是我们过去学的数。

负数前的负号可以去掉吗?(不能,去掉负号,就没办法和正数区分了。) (2)重点理解“0℃”。

介绍0℃的规定科学家把水结冰的温度定为0℃。读作:0摄氏度。

把水沸腾时的温度定为100℃读作:100摄氏度.比0℃低的温度用带“-”号的数表示, 如: -15℃;比0℃高的温度用带“+”号的数表示, 如:+1℃(“+”号可以省略不写)零上的温度用什么表示?零下的温度用什么表示? 师:0正好是零上温度和零下温度的分界点。3认识温度计人们是利用什么工具来测量温度的呢?(温度计)( 1)出示各种各样的温度计( 2 )读出水银柱所表示的温度( 3 )写出水银柱所表示的温度( 4) 比较两个温度的高低 -10℃ >-15℃ 怎么能说明-15℃比-10℃更冷了?理由 -10℃是比零摄氏度还冷10摄氏度, – 15℃是比零摄氏度还冷15摄氏度。

-15℃在-10℃下面4总结归纳正、负数和0的关系:(1)广泛举例:刚才我们已经了解了这么多的正数和负数,谁还能再说几个? (2)所有的正数和0相比有什么关系?负数和0比呢? (负数<0<正数)(3)分别圈出所有的正数和负数(4)0算正数还是负数?(适时组织讨论)三 拓展练习1信息交流 : 生活中你还在什么地方见过负数?(1)、分小组交流收集的数据。(2)、小组汇报你们调查的结果。

四、课堂小结:在今天的课堂上,我们只是初步的认识了负数,其实负数在我们生活中还有着广泛的应用。希望同学们能用数学的眼光观察生活、走进生活,去发现更多更有趣的知识。

%title插图%num