1.数学知识总结请详细写出圆锥曲线的所有关系式
圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}. 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即{P。
PF1|-|PF2||=2a, (2a0)6.抛物线的一段的面积和弧长公式 面积 Area=2ab/3 弧长 Arc length ABC =√(b^2+16a^2 )/2+b^2/8a ln((4a+√(b^2+16a^2 ))/b)[编辑本段]7.其他 抛物线:y = ax^2 + bx + c (a≠0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py[编辑本段]8.用抛物线的对称性解题 我们知道,抛物线y = ax2 + bx + c ( a ≠0 )是轴对称图形,它的对称轴是直线x = – b/ 2a ,它的顶点在对称轴上.解决有关抛物线的问题时,若能巧用抛物线的对称性,则常可以给出简捷的解法. 例1 已知抛物线的对称轴是x =1,抛物线与y轴交于点(0,3),与x轴两交点间的距离为4,求此抛物线的解析式. 分析 设抛物线的解析式为y = ax2 + bx + c .若按常规解法,则需要解关于a、b、c的三元一次方程组,变形过程比较繁杂;若巧用抛物线的对称性,解法就简捷了.因为抛物线的对称轴为x =1,与x轴两交点间的距离为4,由抛物线的对称性可知,它与x轴交于A(-1,0)、B(3,0)两点.于是可设抛物线的解析式为y = a(x+1)(x-3).又因为抛物线与y轴交于点(0,3),所以3 = -3a.故a =-1. ∴y = -(x+1)(x-3),即 y = – x2 + 2x +3. 例2 已知抛物线经过A(-1,2)、B(3,2)两点,其顶点的纵坐标为6,求当x =0时y的值. 分析 要求当x =0时y的值,只要求出抛物线的解析式即可. 由抛物线的对称性可知,A(-1,2)、B(3,2)两点是抛物线上的对称点.由此可知,抛物线的对称轴是x = 1.故抛物线的顶点是(1,6).于是可设抛物线的解析式为y = a(x-1)2+ 6.因为点(-1,2)在抛物线上,所以4a + 6 = 2.故a = -1. ∴y = -(x-1)2+ 6,即 y = – x2 + 2x +5. ∴当x =0时,y = 5. 例3 已知抛物线与x轴两交点A、B间的距离为4,与y轴交于点C,其顶点为(-1,4),求△ABC的面积. 分析 要求△ABC的面积,只要求出点C的坐标即可.为此,需求出抛物线的解析式.由题设可知,抛物线的对称轴是x = -1.由抛物线的对称性可知,A、B两点的坐标分别为(-3,0)、(1,0).故可设抛物线的解析式为y = a(x+1)2+ 4[或y = a(x+3)(x-1)]. ∵点(1,0)在抛物线上, ∴4a + 4 = 0.∴a = -1. ∴y = -(x+1)2+ 4,即 y = – x2 – 2x +3. ∴点C的坐标为(0,3). ∴S△ABC = 1/2*(4*3)= 6. 例4 已知抛物线y = ax2 + bx + c的顶点A的纵坐标是4,与y轴交于点B,与x轴交于C、D两点,且-1和3是方程ax2 + bx + c =0的两个根,求四边形ABCD的面积. 分析 要求四边形ABCD的面积,求出A、B两点的坐标即可.为此,要求出抛物线的解析式.由题设可知,C、D两点的坐标分别为(-1,0)、(3,0).由抛物线的对称性可知,抛物线的对称轴是x = 1.故顶点A的坐标是(1,4).从而可设抛物线的解析式为y = a(x-1)2+ 4[或y = a(x+1)(x-3)]. ∵点(-1,0)在抛物线上, ∴4a + 4 = 0.故a = -1. ∴y = -(x-1)2+ 4,即 y = – x2 + 2x +3. ∴点B的坐标为(0,3). 连结OA ,则S四边形ABCD = S△BOC + S△AOB + S△AOD = 1/2*1*3+1/2*3*1+1/2*3*4=9[编辑本段]9.关于抛物线的相关结论 过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有 ① x1*x2 = p^2/4 , y1*y2 = —P^2 ② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2] ③ (1/|FA|)+(1/|FB|)= 2/P ④若OA垂直OB则AB过定点M(2P,0) ⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F距离等于到准线L距离) ⑥弦长公式:AB=x1+x2+p ⑦△=b^2-4ac ⑴△=b^2-4ac>0有两个实数根 ⑵△=b^2-4ac=0有两个一样的实数根 ⑶△=b^2-4ac。
2.关于圆锥曲线知识点总结
解析几何的基本问题之一:如何求曲线(点的轨迹)方程。
它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。
在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集: ,其中F为定点,d为P到定直线的l距离,F l,如图。
因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。当0<e1时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。
(2)椭圆及双曲线几何定义:椭圆:{P||PF1|+|PF2|=2a,2a>|F1F2|>0,F1、F2为定点},双曲线{P。
PF1|-|PF2||=2a,|F1F2|>2a>0,F1,F2为定点}。
(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。
②定量:椭 圆 双 曲 线 抛 物 线 焦 距2c 长轴长2a —— 实轴长 ——2a 短轴长2b 焦点到对应 准线距离 P=2 p 通径长2· 2p 离心率1 基本量关系 a2=b2+c2 C2=a2+b2 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x轴上的方程如下:椭 圆 双 曲 线 抛 物 线 标准方程 (a>b>0) (a>0,b>0) y2=2px(p>0) 顶 点 (±a,0) (0,±b) (±a,0) (0,0) 焦 点 (±c,0) ( ,0) 准 线 X=± x= 中 心 (0,0) 有界性 |x|≤a |y|≤b |x|≥a x≥0 焦半径 P(x0,y0)为圆锥曲线上一点,F1、F2分别为左、右焦点 |PF1|=a+ex0 |PF2|=a-ex0 P在右支时: |PF1|=a+ex0 |PF2|=-a+ex0 P在左支时: |PF1|=-a-ex0 |PF2|=a-ex0 |PF|=x0+ 总之研究圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。2、直线和圆锥曲线位置关系 (1)位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。
其中直线和曲线只有一个公共点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x或y方程的二次项系数为0。直线和抛物线只有一个公共点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后一种情形下,消元后关于x或y方程的二次项系数为0。
(2)直线和圆锥曲线相交时,交点坐标就是方程组的解。 当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。
4、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。
3.数学···圆锥曲线···学习方法
很正常,圆锥曲线的却是一个重难点。
这部分主要还是练题,选本省近几年的高考题来做,大题小题都做。首先要熟悉这部分的知识点。
参考:椭圆 /view/36981.htm 双曲线 /view/286910.htm 抛物线 /view/734.htm然后就是运用。圆锥曲线有很多性质,解题时若能灵活运用,可以大大提高效率。
例如焦半径公式、通径等。解题的时候,特别是对于小题,注意运用圆锥曲线的定义。
还有一点,圆锥曲线的大题一般说来运算量都很大,这对基本功要求很高。因此平时要多动手算,即使看例题的时候也要自己算一遍。
过不了运算这一关,圆锥曲线就很难突破。要说具体的方法也说不出,还得靠自己通过做题来总结。
(希望上面说的对你有帮助。我的QQ 1195031408 不过最近准备考试可能没空)。
4.圆锥曲线考点
圆锥曲线的内容无非是双曲线,抛物线,椭圆,如果是选择题,常考到双曲线或椭圆的离心率,做不出时可以考虑用第一定义试试(点到两定点距离之差为定值,则为双曲线等等定义),填空题常要求一些符合题设条件下三角形的面积或最值,取值范围,如焦点三角形的面积,大题常考抛物线,椭圆与直线相结合的问题,一般两小题,第一小题送分,一般是根据已知条件求椭圆或抛物线的方程,注意取值范围,第二小题很灵活,但有得分点,一般都会考到韦达定理(联立方程,求⊿>0,1分,列出x1+x2=,x1x2=,2分,如果有判断存在与否的一定不要忘了判断,蒙对了也有1分,学好圆锥曲线关键在概念的明确,主要考察计算的细心,所以需要一定量的练习,做的多了就会有感觉的,我今年参加的高考,希望对你有帮助。
5.高中数学圆锥曲线公式定理
圆锥曲线包括椭圆,双曲线,抛物线
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P
PF1|-|PF2||=2a, (2a3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。
·圆锥曲线的参数方程和直角坐标方程:
1)直线
参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)
直角坐标:y=ax+b
2)圆
参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )
直角坐标:x^2+y^2=r^2 (r 为半径)
3)椭圆
参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )
直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1
4)双曲线
参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )
直角坐标(中心为原点):x^2/a^2 – y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 – x^2/b^2 = 1 (开口方向为y轴)
5)抛物线
参数方程:x=2pt^2 y=2pt (t为参数)
直角坐标:y=ax^2+bx+c (开口方向为y轴, a0 ) x=ay^2+by+c (开口方向为x轴, a0 )
圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e·cosθ)
其中e表示离心率,p为焦点到准线的距离。
6.圆锥曲线知识点总结
x^2/a^2+y^2/b^2=1或y^2/a^2+x^2/b^2=1(椭圆标准方程)
x^2/a^2-y^2/b^2=1或y^2/a^2-x^2/b^2=1(双曲线标准方程)
以下是抛物线:
y^2=2px,在x轴正半轴上,焦点为(0,p/2),准线方程为(x=-p/2)
y^2=-2px,在x轴负半轴上,焦点为(0,-p/2),准线方程为(x=p/2)
x^2=2py,在y轴正半轴上,焦点为(p/2,0),准线方程为(y=p/2)
x^2=-2py,在y轴正负轴上,焦点为(-p/2,0),准线方程为(y=-p/2)
7.圆锥曲线基本技巧
①定义和相应参数必须掌握。
一些问题死算很花时间,而用定义几乎是秒杀。经常在最值类题目出现②注意一些几何关系。
在圆锥曲线题目中,经常用到三角形各心的性质,相似三角形以及全等等平面几何知识。这个经常在轨迹类题目出现。
③特别注意直线和圆锥曲线的位置关系这块知识,近几年各地高考考察率几乎是100%。尤其注意相交时的设而不求。
这块知识往往是难点,难不是想不到,而是算不出。所以平时必须加强计算能力。
常见问题:定值定点,参数范围,中点弦等、④在基础的掌握后,必须自学一些课堂上讲不到的一些知识,对付一些题目可以起到事半功倍的效果。我推荐这几个:极坐标,参数方程,圆锥曲线硬解定理,隐函数求导,圆锥曲线的极点和极线。
极坐标对于过焦点的直线的相关问题可谓是秒杀,参数方程可秒某些范围问题。硬解定理在80%的圆锥曲线题目中可用,但是式子复杂,我当时自己推了几遍,然后每次都用用熟的,这个熟悉了之后,常见的一些题目都能在10分钟内解决了。
隐函数求导和圆锥曲线的极点极线二选一,作用一样,都是用来解决中点弦问题,比点差法快。注:极坐标和硬解定理以及参数方程可在答题卡上作答。
其他的谨慎,大题老实点差法,小题偷偷用。望采纳,祝学习愉快练好圆锥曲线只有两点:①把最基本的题型练熟②在练熟的基础上多做题,拓宽思路。
你可以做高考题。希望能帮到你,加油~那你觉得典型的题目有哪些类型和思考方法,本人高三,这节唯独不好,请详解,有追加分,谢啦!4、计算能力一定要过硬,要有“不怕麻烦的劲头”;5、与角度,垂直有关问题,要恰当运用“向量”的知识。
8.有关圆锥曲线等图形的有关知识点的归纳
圆锥曲线年级:高二 科目:数学 时间:12/12/200921:11:36 新 6046469圆锥曲线中重要的知识点总结一下,还有一些经典例题。
Gif 解:同学你好,老师提供以下资料供你参考,希望对你有所帮助: 一、圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P。
PF1|-|PF2||=2a,(2a<|F1F2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e1时为双曲线。
二、圆锥曲线的方程。 1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2) 2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2) 3.抛物线:y2=±2px(p>0),x2=±2py(p>0) 三、圆锥曲线的性质 1.椭圆:+=1(a>b>0) (1)范围:|x|≤a,|y|≤b (2)顶点:(±a,0),(0,±b) (3)焦点:(±c,0) (4)离心率:e=∈(0,1) (5)准线:x=± 2.双曲线:-=1(a>0, b>0) (1)范围:|x|≥a, y∈R (2)顶点:(±a,0) (3)焦点:(±c,0) (4)离心率:e=∈(1,+∞) (5)准线:x=± (6)渐近线:y=±x 3.抛物线:y2=2px(p>0) (1)范围:x≥0, y∈R (2)顶点:(0,0) (3)焦点:(,0) (4)离心率:e=1 (5)准线:x=- 四、例题选讲: 例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。
解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。 注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点到准线的距离等等)不受椭圆的位置的影响。
例2.椭圆+=1的离心率e=,则m=___________。 解:(1)椭圆的焦点在x轴上,a2=m,b2=4,c2=m-4,e2===m=8。
(2)椭圆的焦点在y轴上,a2=4,b2=m,c2=4-m,e2===m=2。 注意:椭圆方程的标准形式有两个,在没有确定的情况下,两种情况都要考虑,切不可凭主观丢掉一解。
例3.如图:椭圆+=1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1⊥x轴,且PO//AB,求椭圆的离心率e。 解:设椭圆的右焦点为F2,由第一定义:|PF1|+|PF2|=2a, ∵PF1⊥x轴,∴ |PF1|2+|F1F2|2=|PF2|2, 即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2, ∴ |PF1|=。
∵PO//AB,∴ ΔPF1O∽ΔBOA, ∴ = c=ba=c, ∴ e==。 又解,∵PF1⊥x轴,∴ 设P(-c, y)。
由第二定义:=e|PF1|=e(x0+)=(-c+)=, 由上解中ΔPF1O∽ΔBOA,得到b=ce=。 例4.已知F1,F2为椭圆+=1的焦点,P为椭圆上一点,且∠F1PF2=,求ΔF1PF2的面积。
分析:要求三角形的面积,可以直接利用三角形的面积公式,注意到椭圆中一些量之间的关系,我们选用面积公式S=absinC。 解法一:SΔ=|PF1|·|PF2|·sin |PF1|+|PF2|=2a=20, 4*36=4c2=|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos, 即(|PF1|+|PF2|)2-3|PF1||PF2|=4*36, |PF1|·|PF2|= ∴ SΔ=**=。
解法二:SΔ=|F1F2|·|yP|=*12*yP=6|yP|, 由第二定义:=e|PF1|=a+exP=10+xP, 由第一定义:|PF2|=2a-|PF1|=10-xP, 4c2=|F1F2|2=(10+xP)2+(10-xP)2-2(10+xP)(10-xP)cos, 144=100+=, =64(1-)=64*, SΔ=6|yP|=6*=。 注意:两个定义联合运用解决问题。
从三角形面积公式均可得到结果。初学时最好两种办法都试试。
例5.椭圆+=1 的焦点为F1和F2,点P在椭圆上,若线段PF1的中点在y轴上,求:|PF1|,|PF2|。 分析:先要根据题意画出图形,然后根据已知量,将关于|PF1|,|PF2|的表达式写出来,再求解。
解:如图,∵O为F1F2中点,PF1中点在y轴上,∴PF2//y轴,∴PF2⊥x轴, 由第一定义:|PF1|+|PF2|=2a=4, |PF1|2-|PF2|2=|F1F2|2, (|PF1|-|PF2|)(|PF1|+|PF2|)=4*9=36, 。 例6.椭圆:+=1内一点A(2,2),F1,F2为焦点,P为椭圆上一点,求|PA|+|PF1|的最值。
解:|PA|+|PF1|=|PA|+2a-|PF2|=10+|PA|-|PF2|≤|AF2|+10=2+10, |PA|+|PF1|=|PA|+10-|PF2|=10-(|PF2|-|PA|)≥10-|AF2|=10-2。 注意:利用几何图形的性质:三角形两边之和大于第三边,两边之差小于第三边。
例7.已知:P为双曲线-=1(a>0, b>0)上一点,F1,F2为焦点,A1,A2为其顶点。求证:以PF1为直径的圆与以A1,A2为直径的圆相切。
证明:不妨设P在双曲线的右支上,设PF1中点为O’, A1A2中点为O, |OO’|=|PF2|,圆O半径为|A1A2|,圆O’半径为|PF1| 由双曲线定义:|PF1|-|PF2|=|A1A2| |PF1|-|A1A2|=|PF2|=|OO’| ∴ 两个圆相内切。 注意:可以自己证出P在左支时,两圆相外切。
例8.已知:过抛物线y2=2px(p>0)焦点F的直线与抛物线交于P,Q两点。求证:以线段PQ为直径的圆与准线相切。
证明:由定义知,如图:|PP’|=|PF|, |QQ’|=|QF| |PQ|=|PP’|+|QQ’|,|PQ|=(|PP’|+|QQ’|), 故圆心到准线的距离等于圆的半径,即圆和准线相切。
9.高中圆锥曲线所有公式
x^2/a^2+y^2/b^2=1 这是椭圆的公式, 焦点在X轴上
y^2/a^2+x^2/b^2=1 这是椭圆的公式,焦点在Y轴上。(a^2=b^2+c^2) c 是椭圆的焦距
x^2/a^2-y^2/b^2=1 这是双曲线的公式,焦点在X轴上。
y^2/a^2-x^2/b^2=1 这是双曲线的公式,焦点在Y轴上。
a^2+b^2 =c^2
y=2px 抛物线的公式。(p/2是焦点到原点的距离,它会等于
焦点到准线的距离)准线公式:x=a^2/c