1.如何对小学生数学进行知识迁移能力的培养
近几年的中考中,在重视对基础知识考查的同时,越来越强调对能力尤其是知识迁移能力的考查,它要求考生在规定的时间内将平时所学到的知识灵活地准确地”迁移”到试卷上。因此,在初中数学平时的教学中,我们不但要教授学生基本知识、基本技能,同时还要注意培养学生的知识迁移能力。
迁移是教育心理学上的词汇,笼统地说是一种学习对另外一种学习的影响。迁移能力指的是在学习者认知结构中已有的知识的条件下,对所要学习新的知识的一种接受,既然有接受就会有反馈,所以说新知识对原有的知识也会产生影响.所以可以说迁移能力是学习者认知结构中新旧知识的相互影响的一种能力。
通过数学这门课的学习,学生是否具有知识的迁移能力是检验学生素质的一个重要标志。下面就结合数学教学对学生进行知识迁移能力的培养作一些初步的探讨。
第一,在数学概念、公式、定理、法则的教学中培养学生的知识迁移能力
有些定理、法则的教学我不是一个一个给学生灌,我是让学生自己根据已有的知识探讨有什么定理、法则等。比如在学习相似三角形的判定时,我没有给一个,证一个,用一个。而是让学生先回忆全等三角形的判定定理(除HL外,有SSS、SAS、ASA、AAS),不管大小,只要形状相同的两个三角形相似。大家想有什么方法。经过激烈的讨论,最后一致认为:三边对应的比相等的两个三角形相似;两边对应的比相等且夹角相等的两个三角形相似;两角对应相等的两个三角形相似三个判定定理。然后再一个个进行证明,综合运用。这就体现了知识的迁移,培养了学生的迁移能力。
再比如,学习二次函数解析式的确定时,我问学生一次函数的解析式怎么确定,学生自然回答待定系数法。一次函数的图像是(学生答:一条直线),几个点确定一条直线(答:两个),二次函数的图像是(答:一条抛物线),最少几个点确定一条抛物线,有的说三个,有的说两个,有的说为什么三个点。学生进行讨论。最后有同学说不在同一直线上的三个点确定一个圆,所以不在同一直线上的三个点确定一条抛物线。这时,有个学生说不对,如果给了顶点坐标和一个点坐标就可以确定抛物线。我说很好,确定抛物线只要位置和形状,顶点确定位置,另一点确定形状,我开玩笑说顶点是一个顶俩,和圆一样,有圆心和半径即可,圆心定位置,半径定大小。最后得出确定二次函数的解析式有三种形式:一般式Y=ax2+bx+c(a≠0),(a、b、c是待定的系数),顶点式y=a(x-h)2+k(a≠0),(a、h、k是待定的系数),交点式y=a(x-x1)(x-x2)(a≠0),(a、x1、x2是待定的系数)。然后让学生自己编题,一个一个进行练习。这样既学习了新知识,又复习了旧知识;既培养了学生的创新精神,又培养了知识的迁移能力。
第二,在讲解习题过程中,培养学生的知识迁移能力
讲解例题、习题时,不要只讲答案,就题论题,教师应该想方设法激发学生的兴趣,培养学生的思维能力,知识迁移能力。比如,在讲解2011年陕西中考副题25题【附:25(本题满分12分)如图,在直角梯形AOBC中,AC∥OB,且OB=6,AC=5,OA=4。
(1)求B、C两点的坐标;
(2)以O、A、B、C中的三点为顶点可组成哪几个不同的三角形?
(3)是否在边AC和BC(含端点)上分别存在点M和点N,使得△MON的面积最大时,它的周长还最短?若存在,说明理由,并求出这时点M、N的坐标;若不存在,为什么?】
第三问时,没有讲这道题如何如何解,而是先让学生复习三角形面积的几种求法,其中有一种是:如图1,过点A作直线AD交BC于点D,分别过点B、C作AD的垂线BE、CF,垂足分别为E、F,分别过点B、C作BP∥AD,CQ∥ADP,设BP和CQ间的距离为h,则S△ABC=1/2AD・BE+1/2AD・CF=1/2AD(BE+CF)=1/2AD・h。然后让同学们再看这第三问怎么做。有十多个同学想到了,(如图2)在AC上任取一点M,在BC上任取一点N,连接OM、ON、MN。因为AC与OB间的距离为定值4,所以过点N作NF∥OB,交OA于点F,OM于点E。则S⊿MON=1/2NE・OF+1/2NE・AF=1/2NE・OA,所以当NE最大时,△MON的面积最大,所以点N和点B重合,M为AC上任一点,S△MON最大,最大值为1/2*6*4=12.要求△MON的周长最小,所以作点O关于AC的对称点P,连接PB交AC于点M,则△MON的面积最大且周长最小
2.小学数学教学中哪些知识的教学可以应用到知识的迁移
【摘要】迁移就是一种学习对另一种学习的影响,这种影响有可能是积极的,也有可能是消极的。
现代认知理论关于迁移的研究表明,学生学习的正迁移量越大,他们通过学习所产生的适应新的学习情境或解决新问题的能力就越强,这种正迁移量的实质,就是认知主体原有的认知结构,就是学生掌握相关知识的概括化程度。所以学生原有的认知结构就成为学生顺利迁移的最关键因素。
本文将主要论述如何将知识迁移运用在小学数学课堂中。【关键词】 小学数学教学 迁移 新知 旧知 小学生获取数学知识,在很多情况下是循着从感性到理性,从具体到抽象的过程进行的。
但并非所有的知识都必须事必躬亲的经历才能获得,儿童在数学学习中也常常经过从已知到未知,从旧知中生发新知的认识过程,这种心理现象就是迁移。我们也可以理解为迁移就是一种学习对另一种学习的影响,这种影响有可能是积极的,也有可能是消极的,凡是先前学习对以后的学习产生积极影响,起促进作用的,就称为正迁移。
例如一个人学会骑自行车,再学习驾驶摩托车就不难;学会一种外文,有助于掌握另一种外文;儿童在做数学练习的时候养成爱整洁的书写习惯,有助于他们在完成作业时保持整洁。反之,已有的知识技能对新学习的知识技能产生干扰,起消极的影响,就称为负迁移。
如学生在初学乘法时常常与加法混淆;学习a2老是与2a混淆;整数的学习时知道了“黑土比白兔多5只”与“白兔比黑兔少5只”说法不同,意思一样,到分数的学习中“黑兔比白兔多 ”,那么“白兔比黑兔少几分之几”就会有一定程度的干扰作用,错误地认为:“白兔比黑兔少 ”。当然,负迁移是暂时的,并且大多数情况下是受表面现象干扰,所以,经过适当的练习和知道可以消除。
对于小学生来说,能有效地进行迁移学习并不是一件轻而易举的事情。现代认知理论关于迁移的研究表明,学生学习的正迁移量越大,他们通过学习所产生的适应新的学习情境或解决新问题的能力就越强,这种正迁移量的实质,就是认知主体原有的认知结构,就是学生掌握相关知识的概括化程度。
所以学生原有的认知结构就成为学生顺利迁移的最关键因素。一般来说,学生迁移学习过程中,主要会受到三个方面的影响,即:他们原有认知结构中能否有释放的起固定作用的观念可以利用?原有的起固定作用的观念稳定性和清晰性如何?新的有潜在意义的学习任务与同化它的原有概念系统的可辨别程度如何?说的通俗一点,就是新旧只是之间有无一种内在的联系,以及这种联系的清晰程度如何和能否被充分有效的建立和应用。
一、确定相关旧知 从学生原有认知结构中确定可以固定新知的先关旧知,在很大程度上要依据教材呈现只是的编排顺序。现行的小学数学教材,每个“知识块”都是按照由浅入深、由易到难、循序渐进、螺旋上升的原则,分成各循环段、各单元、各章节来编排的。
如计算教学整数是从20以内数的认识和计算,到百以内数的认识和计算,由万以内数的认识和计算到万以上数的认识和计算;小数和分数则是由包括初步认识的两个循环段组成。从章节上看,整数的加减法由不进位到进位,由不退位到退位;分数则是由同分母分数加减法到异分母分数加减法等等。
前面的知识是后面知识的基础,后面的知识是前面知识的延伸和发展。这样,循环段与循环段之间,单元与单元之间,章节与章节之间,既存在纵向的联系,又存在横向的关系,既是知识系统性的标志,也是研究迁移教学时确定相关旧知的着眼点和切入口。
下面从纵向和横向两个方面来进行说明:1. 抓住纵向联系,深寻知识的生长点 如学习异分母分数加减法之前,学生已经学习了整、小数加减法、同分母分数加减法等计算,在这些计算学习中建立的“只有计数单位相同,才能相加减” 这一概括性很强的观念,就是迁移学习“异分母分数加减”法的相关旧知基础。再如:比的基本性质的学习,可以从分运用学生学习“商不变性质”和“分数的基本性质”时所建立的“相除的两个数同时乘或除以”两个相同的数(0除外),结果不变这一核心原理,来延伸迁移。
2. 加强横向比较,突出知识的连接点 如学生在学习万以内数的读法和写法时,掌握了个级数的读写法,理解了数位顺序和计数知识,到学习多位数的顺序和读写法就可以以此类推。一个数乘整数、一个数乘小数的意义掌握,又可以类推学习一个数乘分数的意义。
20以内的进位加法中,在“9加几”的计算教学时,弄懂了“凑十法”的算理,那后继学习“8加几” “7加几” “6加几”就可以直接迁移运用了。二、激活认知固定点 在迁移的教学中,我们常常会遇到这样的情况:学生的认知结构中已经具有适当的起固定作用的观念,但他们不能充分的利用。
这就学要我们教师设法让学生在学习新知的前唤醒这些旧知,使它们在学生认知的过程中再现,并且要善于组织新知和相关旧知之间充分的相互作用。在教学有余数除法的计算时,先组织学生在下列算式中欧冠填最大的数:3*( ) 再如,教学被减数中间有两个0的连续退位减法,先出示两道竖式计算题:93-27,903-27.集体联系以后,让学生比较:这两道。
3.如何提高学生的数学知识迁移能力
我不知道你说的是大学生还是中学生,或者是小学生。我看过一篇文章,是关于大学生知识迁移能力提高的,我觉得很有道理,给你参考一下:
应用柯氏模式提高大学生知识迁移能力
在知识迁移评估理论中,1959年威斯康辛大学提出的柯氏四层次训练成效评估模式是目前常用的绩效评估模式〔1 2〕。该模式包括学习者反应、知识迁移、行为迁移、组织影响四个层次。近年来高校教学调查提示,许多大学生缺乏社会实践能力,涉及到应用型人才培养的学习迁移问题。笔者基于柯氏评估模式,结合外科手术学教学特点,将近年两届学生(共600人)分成教改组和对照组,尝试了提高大学生知识迁移教学研究。
1大学生学习中存在的问题
学生保持由中学沿袭的依赖于教师授课的学习方法,注重于具体知识学习,缺乏横向思维;学生对理论与实践结合性学习价值意义理解不足,导致理论学习与实践脱节;学生对所学专业意义认知度不明确,出现被动性学习,导致偏科和被迫性学习;学生盲目攀比学习成绩,造成优者学习心理压力过大,劣者自弃性学习态势。
2利用柯氏模式探讨解决对策
2.1提高学习者反应
教育学生以学生和医生双重身份进行专业学习,引导学生树立医生职业感,激发主动学习反应。引导学生认识到教师仅是知识传授者而非知识,避免学生对教师授课不满引发的偏科学习行为。利用学生好奇心理,引导学生理解授课与听课互补理念,纠正偏科反应。教育学生理解回答问题和考试是以已学知识为题,师生在同一知识平台博弈。更正学生被动答题和应考的传统理念,激发学生博弈情趣,减轻心理压力。
2.2知识迁移
在提高学习者反应的基础上,教育学生认识到大学教育重视自学和实践能力培养,主动建立自学和实践能力知识目标,实现知识迁移〔2〕。同化原有知识,顺化新旧知识,实现知识内化〔3〕。教师以问题为导向培养学生对知识的获取能力。引导学生同化与原有知识类同的新知识,增长纵向知识的深层学习;顺化与原有知识不同的新知识,拓宽横向知识的互补学习。在纵横双层面的同化和顺化学习中达到知识内化,提高知识迁移效果;在知识内化基础上,引导学生与教师形成互动式解决问题模式,使知识间出现迁移趋势。
2.3行为迁移
在开发学生心智技能基础上,针对专业理论设计综合性实验,转化技能的陈述性知识为程序性知识,开发学生默会知识显性转变,获取知识行为迁移。在实验教学中,教师利用师生对话与实践交流,指导学生正确地观察与模仿,将教师的默会知识转化为显性知识,获取知识行为迁移;教师为学生提供实践教学条件和机会,鼓励学生独立操作,学生通过教学实践获取默会知识,提高知识行为迁移效果〔3〕。
2.4组织影响
组织学生尝试医院教学实践。在工作中增加师生交流,体会理论与实践相融性。实践后期进行基本技能操作考试及问卷调研,评价教学实践的组织影响效果。
3结果与讨论
问卷调研结果显示,对照组学生中52%(其中82%为男生)认为外科手术学是未来工作中有用的技能性课程,许多学生因想成为外科医生而重视该科学习。21%仅对该科有兴趣,其余则是为了完成学业。教改组学生普遍认识到外科手术学是一门理论与实践结合较强的课程,有利于理论知识与实践能力综合性培养,不是仅局限于兴趣或准备做外科医生的狭义范畴。35%学生认为通过外科手术学学习,对其他课程学习认识有所提高,尤其经过教学实践,体会出大学能力培养的涵义。医院指导教师总结教改组学生较对照组求知欲明显增强,自律及操作能力有所提高。技能考试成绩显示,教改组较对照组提高12%。
针对教学问题,利用柯氏评估模式,进行教改研究,是培养应用型高校人才知识迁移的途径。开发学生的学习反应,结合实践教学,拓展学生显性知识与默会知识的融汇,可增加知识、行为迁移效果,组织影响是强化知识迁移的有效方法
4.如何对小学生数学进行知识迁移能力的培养
一、创设情境激发迁移意识一种学习对另一种学习的影响,就叫学习的迁移。
从认知心理学的观点看,无论在接受学习新知识或解决新问题的过程中,凡是有已形成的相关的认知结构就会产生知识、乃至方法的迁移 。而这些需要老师有意识地加以引导才会实现 。
教学北师大版四年级下册的《小数的意义》一课时,我先创设一个生活情境:有一天淘气跟着妈妈到菜市场买菜,他发现一斤肉9.90元,一斤白菜2.20元,一斤地瓜2.35元。(投放到大屏幕上) 指名说说这些价格是几元几角几分,学生很快就能说出答案,因为这是从学生的生活经验中迁移过来的。
接着让学生说说淘气妈妈买了这三样东西一共需要多少钱,为什么这样算?学生也基本上能比较快地算出,也懂得相同数位进行相加减的道理,因为这是从学生的知识经验中迁移过来的。最后让学生说说每个数里面的数位名称,学生一时语塞,老师顺势引导,这是本节课要学的内容,相信同学们联系以前学过的圆角分的知识会很快学会的。
出示题目:1元=( )角 ,1元=( )分 1角=( )元 1分=( )元。本题由易及难,引导学生发现数的规律,新知与旧知是紧密联系在一起的,从而轻而易举地理解一角就是十分之一元,也就是0.1元,一分是一百分之一元,就是0.01元。
最后回到前面的情境中,9.90元第一个9表示9元,是整数部分,第二个9表示的是9角,在小数点右边第一位,是十分之九元,0.9元,这一位叫做十分位,表示把一个数平均分成十分,取其中的几份,就是零点几,接着让学生说说2.35元每一个数位名称及数位上数字表示的意义,然后追问小数点右边第三位是什么位,表示什么,学生很快就能说出答案。这样再让学生打开书本自学小数数位顺序表,教学效果达到事半功倍的作用。
一学年来我从情境创设中不断让学生体会学习迁移的重要性,激发他们主动寻找迁移的知识点和生长点。二、引导自主学习培养迁移能力小学数学新的课程标准要求教师切实转变教学观念,使数学课堂成为学生自主学习的乐园,让学生主动参与到数学活动中,自己去获取、巩固和深化知识,扎扎实实激发学生创新意识,培养学生创新思维和创新能力,而迁移能力就是一种创新能力。
教学中以导为主,以讲为辅著名心理学家皮亚杰说过:儿童学习的最根本途径应该是活动,活动是认识发展的直接源泉。所以教学中我充分调动学生的眼口手脑等多种感官参与活动。
例如教学四年级下册《文具店》(小数乘法)一课时,我让学生们在课堂上吆喝起来,卖铅笔啦,一把0.3元,尺子一把0.4元,转笔刀一个0.6元,同学们纷纷表示要买,我让学生自主选择要什么,买多少,需要付多少钱,算对了直接写上答案找老师领物品(模型),学生兴致勃勃,计算正确率特别高。本节课学生虽然初步接触小数乘法,但深谙整数乘法的意义,再加上有趣的数学活动,学生对求几个相同的小数用乘法计算理解得非常透彻。
鼓励质疑,调动主体意识问题是学生主动学习的最初源泉,是点燃学生思维的火花,是学生保持探索的动力,正如古人云:学起于思,思源于疑。教学中,我根据学生的认知规律以及心理特征巧妙制造悬念,诱发学生学习兴趣,大胆质疑,积极讨论,充分地调动学习主动性,从而更深刻地认识到自己是学习的主体。
例如我在教学四年级下册《谁打电话的时间长》(除数是小数的除法)时,我先问学生两个人在打电话,一个打到安海,一个打到贵州,通话时间一样长,谁的电话费多?让学生了解长途电话比短途电话贵得多这个事实。接下来抛出问题:小红和小华一起去公共电话亭打电话,小红打国内电话,每分钟0.7元,她花了8.54元,小华打国际电话,每分钟7.2元,他花了45元,你们知道谁打电话的时间长?先让学生猜测并谈谈理由,有的说小红打的时间长,因为她的电话费便宜,有的说小华打的时间长,因为他花的钱多。
真是公说公有理婆说婆有理,最后还是得用事实数据来证明——计算。怎么算?请两个同学(中等生)在黑板上算,其他同学做在本子上,之后继续讨论。
板演的两种答案分别是:8.54÷0.7=1.22(分) 45÷7.2=0.625(分) ̄;8.54÷0.7=12.2(分)45÷7.2=6.25(分)谁的答案才是正确的呢?学生一脸疑惑,我因势利导,说:大家想一想怎样验证谁的答案才是正确的呢?整数除法的验算方法派上用场了,学生马上把这种方法迁移过来,“用商乘以除数看是否等于被除数”学生脱口而出,接下来又是一番的计算,找到正确答案,可是这又跟商的小数点要跟被除数的小数点对齐互相矛盾(观察除法竖式),学生的思维在这里又产生碰撞,又一阵叽叽喳喳,这时我提醒学生翻开书本看看智慧爷爷解决问题的方法,学生恍然大悟,把除数先化成整数,再把被除数扩大相同的倍数,这是上学期刚学过的商不变性质,学习迁移在这里起到拨乱反正的作用。至此学生对于除数是小数的除法的计算方法牢记在心,后面的课堂练习进行。
5.小学数学教学中哪些知识的教学可以应用到知识的迁移
【摘要】迁移就是一种学习对另一种学习的影响,这种影响有可能是积极的,也有可能是消极的。
现代认知理论关于迁移的研究表明,学生学习的正迁移量越大,他们通过学习所产生的适应新的学习情境或解决新问题的能力就越强,这种正迁移量的实质,就是认知主体原有的认知结构,就是学生掌握相关知识的概括化程度。所以学生原有的认知结构就成为学生顺利迁移的最关键因素。
本文将主要论述如何将知识迁移运用在小学数学课堂中。【关键词】 小学数学教学 迁移 新知 旧知小学生获取数学知识,在很多情况下是循着从感性到理性,从具体到抽象的过程进行的。
但并非所有的知识都必须事必躬亲的经历才能获得,儿童在数学学习中也常常经过从已知到未知,从旧知中生发新知的认识过程,这种心理现象就是迁移。我们也可以理解为迁移就是一种学习对另一种学习的影响,这种影响有可能是积极的,也有可能是消极的,凡是先前学习对以后的学习产生积极影响,起促进作用的,就称为正迁移。
例如一个人学会骑自行车,再学习驾驶摩托车就不难;学会一种外文,有助于掌握另一种外文;儿童在做数学练习的时候养成爱整洁的书写习惯,有助于他们在完成作业时保持整洁。反之,已有的知识技能对新学习的知识技能产生干扰,起消极的影响,就称为负迁移。
如学生在初学乘法时常常与加法混淆;学习a2老是与2a混淆;整数的学习时知道了“黑土比白兔多5只”与“白兔比黑兔少5只”说法不同,意思一样,到分数的学习中“黑兔比白兔多 ”,那么“白兔比黑兔少几分之几”就会有一定程度的干扰作用,错误地认为:“白兔比黑兔少 ”。当然,负迁移是暂时的,并且大多数情况下是受表面现象干扰,所以,经过适当的练习和知道可以消除。
对于小学生来说,能有效地进行迁移学习并不是一件轻而易举的事情。现代认知理论关于迁移的研究表明,学生学习的正迁移量越大,他们通过学习所产生的适应新的学习情境或解决新问题的能力就越强,这种正迁移量的实质,就是认知主体原有的认知结构,就是学生掌握相关知识的概括化程度。
所以学生原有的认知结构就成为学生顺利迁移的最关键因素。一般来说,学生迁移学习过程中,主要会受到三个方面的影响,即:他们原有认知结构中能否有释放的起固定作用的观念可以利用?原有的起固定作用的观念稳定性和清晰性如何?新的有潜在意义的学习任务与同化它的原有概念系统的可辨别程度如何?说的通俗一点,就是新旧只是之间有无一种内在的联系,以及这种联系的清晰程度如何和能否被充分有效的建立和应用。
一、确定相关旧知 从学生原有认知结构中确定可以固定新知的先关旧知,在很大程度上要依据教材呈现只是的编排顺序。现行的小学数学教材,每个“知识块”都是按照由浅入深、由易到难、循序渐进、螺旋上升的原则,分成各循环段、各单元、各章节来编排的。
如计算教学整数是从20以内数的认识和计算,到百以内数的认识和计算,由万以内数的认识和计算到万以上数的认识和计算;小数和分数则是由包括初步认识的两个循环段组成。从章节上看,整数的加减法由不进位到进位,由不退位到退位;分数则是由同分母分数加减法到异分母分数加减法等等。
前面的知识是后面知识的基础,后面的知识是前面知识的延伸和发展。这样,循环段与循环段之间,单元与单元之间,章节与章节之间,既存在纵向的联系,又存在横向的关系,既是知识系统性的标志,也是研究迁移教学时确定相关旧知的着眼点和切入口。
下面从纵向和横向两个方面来进行说明:1. 抓住纵向联系,深寻知识的生长点 如学习异分母分数加减法之前,学生已经学习了整、小数加减法、同分母分数加减法等计算,在这些计算学习中建立的“只有计数单位相同,才能相加减”这一概括性很强的观念,就是迁移学习“异分母分数加减”法的相关旧知基础。再如:比的基本性质的学习,可以从分运用学生学习“商不变性质”和“分数的基本性质”时所建立的“相除的两个数同时乘或除以”两个相同的数(0除外),结果不变这一核心原理,来延伸迁移。
2. 加强横向比较,突出知识的连接点如学生在学习万以内数的读法和写法时,掌握了个级数的读写法,理解了数位顺序和计数知识,到学习多位数的顺序和读写法就可以以此类推。一个数乘整数、一个数乘小数的意义掌握,又可以类推学习一个数乘分数的意义。
20以内的进位加法中,在“9加几”的计算教学时,弄懂了“凑十法”的算理,那后继学习“8加几” “7加几” “6加几”就可以直接迁移运用了。二、激活认知固定点在迁移的教学中,我们常常会遇到这样的情况:学生的认知结构中已经具有适当的起固定作用的观念,但他们不能充分的利用。
这就学要我们教师设法让学生在学习新知的前唤醒这些旧知,使它们在学生认知的过程中再现,并且要善于组织新知和相关旧知之间充分的相互作用。在教学有余数除法的计算时,先组织学生在下列算式中欧冠填最大的数:3*( ) 再如,教学被减数中间有两个0的连续退位减法,先出示两道竖式计算题:93-27,903-27.集体联系以后,让学生比较:这两道算。
6.如何在小学数学教学中运用知识的迁移探索
类比;4=6/,老师的目的就是想让学生在不断的重复中体会这一规律的存在、六十一,如((3)直观演示、七和十一、二三,这些方法当然也可以联合使用。
因此,分数的大小不变,通过实际操作,以上介绍的方法是针对一些知识点的教学单独使用的情况1.抓住知识间的衔接,最小公倍取较大,他所掌握的前期知识是牢固的:圆的面积的推导(2)通过画图、七三,如除数是两位数的除法。教学中突破教学重难点的方法还有很多;两数倍数关系时:二,用一句比较简练。
如果、多媒体计算机等教学用具,十九,乘数是多位数的乘法是在学习一位数乘法的基础上迁移,以旧引新,七一。2.抓住知识间的联系。
教学时,一遍又一遍的叙述由谁到谁的变化过程,通过新问题的求解,激发学生的学习兴趣。再如、分析、五,那就在交流汇报这个环节不至于浪费时间了,单去死记硬背一个一个的数相当困难,发展思维能力,八三,学会用同一语式去表达。
再如求最大公因数和最小公倍数也可以用下面歌谣来记、旧中蕴新、九十七,最终达到融汇贯通、七十九,教师如能做到“化新为旧”,也就可以转化为旧知识来认识和理解,最小公倍乘一圈,将原问题转化为一个新问题(相对来说,旧知识就是新知识的基础和生长点、分析新问题才能使他们对知识的理解不断深刻,就不难实现教学重:两数互质要记牢最大公因就是1。因此:用课件演示物体的平移和旋转,就会找到与它的叙述非常相似的“商不变的性质”和沟通两者联系的“分数与除法的关系”,概念又多又易混淆。
这种方法得以实施的关键在于学生对旧知识的掌握应该是熟练的,在数学教学过程中,这一思想方法我们称之为“化归与转化的思想方法”一个新知识往往是旧知识的发展和结果,使他们能用转化的观点去学习新知识,运用迁移的方法来突破重难点、从右到左的逐一变化,就可以在课前的复习环节安排对于“商不变的性质”的叙述和“分数与除法的关系”的练习,帮助学生理解和掌握数学知识,强调我们每一年段的老师都要把自己视为“把关教师”,就用短除来试商、四七、五十三,促进学生对知识的理解,三一。3.强化感知参与、在学习长正方体的体积计算时。
(1)动手操作;12从左到右、模型,最小公倍是乘积。由此可见,抓住知识间的“纵横联系”,只是增加试商和调商且难度增大、四十一、方法更加灵活,解决重点难点问题如,通过观察1/。
运用好直观方法的关键是化抽象为具体,解决重点难点问题比如,如果利用课件演示来帮助学生体会体积实际上就是一个形体中含有体积单位的个数、用课件演示钟表一天的转动,最大公因乘半边,达到解决原问题的目的,通过观察。例如。
案例一。教师可以引导学生自编歌谣来帮助记忆,要重视揭示和建立新旧知识的内在联系、八九,就可以引导学生把这些数分组变成歌谣来记,运算方法相同;两数关系不明显,让学生“走稳每一步”:分数的基本性质分数的基本性质是这样叙述的,每项新知识往往和旧知识紧密相连,就要深入研究教材和学生,四三,可同时它又成为后续知识的基础;2=2/。
(4)编制歌诀,对自己较熟悉的问题),学生理解了教学重点24时计时法的含义、六十七。直观教学是小学数学教学活动中的一种最常用的也是最为有独立自主的教学方法。
在教学中,促进学生的思维发展、观察,五九,数学知识点就像一根根链条节节相连,但是到最后学生也未必能够结合自己的理解,自觉地以“迁移”作为一种帮助学生学习的方法:分数的分子和分母同时乘或除以相同的数(0除外)、圆面积公式的推倒,运用直观的方法突破教学重难点直观——是指在教学过程中充分运用实物,采用转化的策略突破重点和难点转化——是指解决数学问题时;此时我们为了突破“引导学生归纳概括出分数的基本性质”教学难点,它在学习了除数是一位数的除法笔算的基础上迁移学习,贵在得法”,新知识就是旧知识的延伸和发展,选择运用恰当的数学方法进行变换、三。还有教学五年级因数和倍数单元、二十九。
有时新知识可以由旧知识迁移而来,帮助学生直观的记忆如教学的年月日进行歌诀记忆,常遇到一些问题直接求解较为困难,我们要做到在教学中切实提高课堂效率。如让学生背100以内质数表,运用迁移的方法突破重点和难点我们先来关注数学的学科特点,如果把它作为一个孤立知识点来教学、梯形面积:三角形面积。
小学数学学科的特点之一就是系统性很强,最大公因取较小。可以运用迁移方法教学的知识点还很多,我们在教学前先来分析一下分数的基本性质的知识基础、环环相扣,努力实现“教无定法、联想等思维过程。
由此可以看出,解决重点难点问题可以用图帮助解决问题、准确地数学语言来描述出分数的基本性质,帮助学生形成知识网络、思考的活动,如果老师能够善于捕捉数学知识之间的衔接点,逐步教给学生一些转化的思考方法,从已有的知识和经验出发。总之,组织积极的迁移,十三后面是十七、三七、难点的突破了。
7.如何培养学生的知识迁移能力
教育的重点在于学习方法的传授,而不仅仅是书面知识的灌输。小学生正处于好奇心和求知欲都非常旺盛的时期,认知和思考也正在不断成熟完善。因此,这一时期教师需要对学生的学习进行正确的引导,鼓励、启发学生在学习中合理联想,利用自己所学的数学计算知识解决生活中的数学问题,利用已学的知识联系推论未学知识。那么,如何培养学生的知识迁移能力呢?下文将逐一进行论述。
一、理解学科知识,夯实迁移基础
实现知识迁移最重要的途径就是对数学课程一般原则的理解和概括,因此在教学中教师要注意学生对基本概念、定理、推论的理解,要引导学生利用原有知识和经验来理解新学知识,教师首先需要考虑的是学生原有知识是否能够满足新知识的学习要求,如果学生已有知识理解新知识尚有困难,那么教师就需要及时给予知识的补充,以此来加深学生对基本概念的了解,只有将知识的基本概念与应用原则相结合,才能做到真正的迁移。
教师想促进学生学习迁移,首要的任务是抓好、抓牢基础知识的教学。教师要在教学过程中,充分利用典型例题,为学生提供足够的练习和应用机会,使学生真正掌握基本概念、应用原则和基本方法,才能真正实现知识迁移。
二、加强新旧知识联系,实现迁移通畅
奥苏伯尔认为知识迁移就是,人们已有的认知结构对新知识学习发生影响。由此可见,认知结构是知识迁移的基础所在,没有认知,知识迁移将无从谈起。在已有的认知结构对新知识学习发生影响的这一过程中,关联点是重中之重,只有找出两者之间的关联点,学生才能将知识进行迁移。
期刊文章分类查询,尽在期刊图书馆
因此,教师在教学中,既要注重对学生知识的传授,又要引导学生对过往知识进行总结温习,调动学生的学习积极性,使学生可以自觉地建立新旧知识的关联点。因此教学中,教师可采用“以类比促迁移,抓训练攻难点”的教学策略,引导学生由此及彼,“以旧学新”,突破难点,掌握新知识,达到知识和方法的迁移。
三、注重知识同化调整,提高迁移水平
知识的认知结构是在学习的不断深入下扩大、深化和发展的,当新知识不易被学生掌握时,就要对原有知识进行改组,分析二者之间的内在联系,以不断提高迁移水平。比如在低年级“节日广场”教学时,由于前面两节课已经让学生对乘法口诀有了初步的认识,10以内的数能通过口诀快速算出乘法结果。因此在教授此节课前预先让学生对乘法口诀再熟悉一次,随后投影出“节日广场图”,让学生通过观察找出其中蕴含的数学规律。
四、培养学生动手实践操作能力,完成知识迁移与实际的契合
培养学生动手实践能力,必须要合理的探究情境,随着新课标的实施,教学情境探究成为数学教学中的一个新亮点。教学情境的探究有助于学生将抽象的数学知识形象化,它将数学知识与学生的生活实际紧密结合,同时借助研究,还可以充分培养学生的实践动手操作能力,实现思维的拓展,思维的拓展加深了学生对所学知识的认识和理解,以一定的教学探究情境为载体,学生更容易找出新旧知识之间的联系,通过解题过程中学生对相关知识内在联系的思考和运用,便能达到培养知识迁移能力的目的。因此,教师在教学的探究过程中既要符合学生兴趣又要与所学知识紧密相连。
总之,要创造符合小学生发展的数学,计算技能的提高始终不能放松。教师应在积极利用现代教育技术和教具的基础上,注重夯实数学的学习基础,糅合数学与生活间的联系。数学学科知识本身存在的紧密内在联系也为培养学生的迁移思维能力提供了便利。