1.如何让学生体验数学知识的产生,发展与价值
一、培养学生主动探究知识的意识
要想让学生能够体验到知识的产生过程,首先必须要让学生有主动探究知识的意识,而不是机械的等待老师的传授。例如在教学“圆的面积公式”时,不能因为圆面积公式的推导过程学生很难想到,而直接把公式告诉给学生,这样只能让学生的思维产生惰性,不利于其思维的发展。而是要充分利用“圆是曲线围成的图形”,这一与学生以前学过的图形都是由直线围成的这一最大的不同处,来充分激发学生的求知欲望,从而使其强烈地产生主动探索知识的意识。只有学生有了主动探究知识的意识,才能使他们有机会体验到知识的产生。
二、培养学生发现问题和解决问题的能力
学生的学习过实质上就是学生发现问题和解决问题的过程,因此只有学生的发现问题和解决问题的能力得到了提高,他才能更好的在学习的过程中体验到知识的产生。
三、创设现实情境,让学生在活动的过程中体验知识的产生
知识是来源于生活的,而小学生逻辑思维能力还很低,他们所感兴趣的是游戏活动。因此,在教学过程中,创设良好的现实情境,开展相关的实践活动,对小学生体验知识的产生有很大的帮助。
四、为学生提供积极思考与合作交流的空间
学生体验知识的产生是需要充分地思考与合作交流的空间,这是因为学生只有在活动的过程中才能感悟到数学的真谛,离开了思维空间、离开了学生的实践活动,学生就无从体验到知识的产生。因此要给学生提供一个良好的思考与合作交流的空间,让学生在这个空间中去探索、去发现、去创造、去体验知识的产生。
五、鼓励学生独立思考,引导学生自主探索、积极与他人合作交流
数学的学习过程中,充满着观察、探索、推理、判断,学生往往要与他人合作才能解决某一问题,与他人合作解决问题,往往能让学生更充分的体验知识的产生。
六、重视培养学生应用数学的意识和能力
数学是一门应用性很强的科学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实生活当中去,以体会数学的应用价值。这样学生就能在应用数学知识的过程中,很好的体验到数学知识的产生。例如:在教学完利息的计算方法后,可以让学生实践到银行去存钱,亲身体验存钱的过程;选择适当的存款方式,如何填写存款单,如何计算利息等等。这样学生就能在存钱的过程中,体会到了数学的应用价值,从而深刻地体验到数学知识的产生。
数学是一门很有魅力的学科,学生一当对其发生了兴趣,就会深深的喜欢上它。在素质教育发展的今天,小学数学教学的主要目的是,发展学生的思维、培养学生的创新意识及创新能力。因此,我们教师就要从每一节课、每一个练习的设计扎扎实实地做起,努力培养学生的创新意识及能力,让学生亲身体验知识的产生,从而彻底打破应试教育的弊端,更好地实现素质教育。
2.数学知识的发现和起源
数学的起源和早期发展
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.
3.数学知识的起源
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。
“欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。
与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186—-1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。
这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”
而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。
显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。
在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。
由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”
他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过。
4.数学是怎么产生的,它的发展历史是什么
产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题
数学的发展史大致可以分为四个时期。
1、第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
2、第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
3、第三时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。
4、第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础——–代数、几何、分析中的深刻变化为特征。
扩展资料:
发展过程中研究出的数学成果:
1、李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。
2、华氏定理
华氏定理是我国著名数学家华罗庚的研究成果。 华氏定理为:体的半自同构必是自同构自同体或反同体。 数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
参考资料来源:百度百科-数学
百度百科-数学发展史
5.【我要写一份关于小学三年级数学教学方面的论文,深化小学数学课
一、教材内容介绍: 这册教材中,“数与代数”领域的内容有认识万以内的数、初步认识简单的分数;会计算两位数除以一位数、三位数乘一位数、两位数加减两位数、简单的分数加减法;常见的量要认识千克和克,以及24时记时法.重点:认数与四则计算;难点:24时记时法 “空间与图形”领域中要认识长方形和正方形的特征,简单物体的三视图,知道周长的含义,会计算长方形和正方形的周长.重点:周长意义与计算长方形、正方形周长的方法;难点:观察物体 “统计与概率”领域中教学事件发生可能性相等或不相等.重点:把收集的信息进行整理,能用统计表或条形统计图呈现;难点:正确描述事件发生的可能性 “实践与综合应用”领域安排4次操作型活动与1次场景型活动.重点让学生知道独立探索的同时要加强合作交流,明白“倾听”、“尊重”、“互补”会让问题解决得更好;难点:如何有效地组织活动. 二、教材特点分析: ⒈教学内容的选择 “数与代数”领域以万以内的认数和四则计算(笔算和估算两位数除以一位、三位数乘一位数以及两位数的加和减)为主线,结合安排了认识常量单位(克与千克、24时记时法)以及直观认识分数(一个物体或图形平均分得到几分之一和几分之几). “空间与图形”领域在二年级观察物体基础上,进一步教学物体的正面、侧面和上面,安排了从这三个角度观察一些简单的物体和由三个同样大的正方体摆成的物体(三视图);在一年级直观认识长方体与正方体的基础上,教学这两种平面图形的特点以及计算周长的方法. “统计与概率”领域,在学生初步理解了“可能”“一定”“不可能”的基础上,教学事件发生的可能性有时大些、有时小些,学会用“经常”“偶尔”等词语描述事件发生的可能性. “实践与综合应用”领域共安排了五次实践活动,其中《称一称》、《周末一天的安排》、《周长是多少》、《摸牌与下棋》都是操作型的活动,而《农村新貌》是场景型的活动. ⒉教学内容安排 这册教材的教学内容里,把数学基础知识、基本技能与解决实际问题密切结合,并没有明显的区分.尽量把数学知识和自然科学、社会生活紧密联系,力求让数学思考、解决问题、情感态度等方面的培养目标在知识与技能的教学中得以落实,让教学内容更加有利学生全面、持续、和谐地发展. 把几个领域的教学内容交叉安排,有利于各领域的教学互相支持,形成有机体,这是个亮点,也是我们教学中所追求的.例如,数与代数领域中的许多数学活动方法,应用到其他领域的学习中同样能收到良好的效果;条形图与线段恰当地应用到数与代数领域,能直观地显示数量间的关系,有助于发现规律;统计与概率中对“可能性”的理解与把握,则有利于学生在学习其他领域的内容时,思考更全面. ⒊教材的编写 选择学生身边的、感兴趣的、富有数学内容的事情作为教学材料,并以现实的、有意义的和富有挑战性的方式呈现在教材中,让学生知道数学源于生活,就在我们身边,并不陌生,从而激发学生对学习数学的愿望与热情,激活学生已有的数学活动经验,让学生主动获取数学知识.例题的编写着力于安排教学活动的内容、线索与呈现方式,给创造性地“教”与“学”留出了必要的空间.例题一般不直接呈现和现成的解题方法,而是突出情景中的数学内容、指向解决问题的操作与实践活动,以及学生独立探索后的相互交流.练习的编写注意到学生掌握和巩固新知识需要适当的练习量,同时避免机械地模仿、记忆与重复训练.经常设计一些题组,让学生对同组的几道题进行比较,分析异同,自主构建认知结构;教材中还出现不少的开放性题目,提高学生灵活思考问题、综合运用知识的能力. 从本册教材开始,教材增设了“你知道吗”栏目,结合教学内容,适当介绍一些数学史料,以及和数学有关的科普知识,使学生了解数学知识的产生与发展首先源于人类生活的需要,体会数学在人类发展历史中的作用,感受现实生活中处处有数学,激发学生学习数学的兴趣.本册中,出现了适量的提高题,体现教材的弹性,满足学生的不同学习需求,使全体学生都能得到相应的发展. 三、教学建议: ⒈紧扣学生实际,从学生已有经验入手 数学课程标准强调学生的数学学习必须从学生的生活经验和已有知识体验出发,创设生动、有趣的教学情境,引导学生通过观察、操作、类比等活动掌握基本知识和技能.如在教学三位数乘一位数时,由于其算法与两位数乘一位数基本相同,[1] [2] [3] 下一页 09—10学年三年级上册数学教学计划学生运用已有的学习经验容易实现有效的迁移.教学时,教师不必呈现具体的计算过程,可以提出适当的问题,引导学生在新旧知识之间建立联系,独立思考、自主探索.再如在教学除法验算时,也不把知识直接告诉学生,而是通过例题的教学让学生想到:乘法可以验算除法.这样把除法验算的教学建立在学生已有经验的基础上,不但有利于他们体会乘、除法之间的关系,理解乘法可以验算除法,而且有利于学生养成验算的好习惯. ⒉关注学生探索与合作交流能力,培养学生的创新精神 在数学活动中,学生是学习的主体,教师要转变角色,依据学生的认。
6.数学教育的价值
数学教育的科学价值 对于数学教育,时下人们谈论较多的是它的人文价值。
这的确需要进一步加强研究和实践,却似乎有点冷落对数学教育科学价值的研究。这是否表明数学教育的科学价值在理论上已经清楚、在实践中已经解决了呢?笔者认为并不尽然!在数学教育实践中仍需要加强对学生科学意识、科学观、科学精神的培养,需要加强数学与科学的联系;在理论上仍需要澄清数学课程中数学的“科学性”与“人文性”(这里的“人文性”是指数学教育的人文性,而不仅限指数学的人文性)的关系,确立数学课程改革中的“数学科学价值”定位;等等。
本文主要探讨数学的科学价值、数学教育的科学素养价值和数学教育的“数学科学价值”。一、数学的科学价值 数学的科学价值,是指数学对自然科学的产生与发展的作用和意义。
自19世纪20年代以来,数学的研究对象和方法在本质上越来越凸现出与(自然)科学的区别,数学也就从科学中分离出来,自立“门户”,自成体系。然而,这种分离并不是数学与科学的割裂,而是表明数学的应用更加广泛,不仅包括(自然)科学,也包括政治学、历史学、经济学、语言学、军事学等人文、社会科学,以及音乐、绘画、雕塑等艺术科学,还涉及技术、经济建设乃至社会的许多领域。
特别是当今时代,科学技术迅猛发展,科学数学化的趋势越来越明显,现代科学正朝着广泛应用数学的方向发展。数学对于科学的价值,表现在诸如物理、化学、生物、天文等学科的产生和发展的许多方面。
如果从数学的要素来看,具体表现在以下四个方面。(一)数学知识的应用 在科学的产生和发展中,应用数学知识是最为直接的,也是最为广泛的。
这从天文学的发展可以窥其一斑。哥白尼在提出日心说时,并没有多少观测证据,甚至在某种程度上,一些结果还不如原来的地心说准确,正是他依据数学的理论、运用数学的方法建立起新的天文学理论;开普勒则进一步在天文学上应用数学,他利用第谷、布拉赫的大量观测数据,通过大量的计算和数学分析工作,其结果使得他抛弃了从古希腊人开始就一直认为行星具有圆形轨道的观点,从而建立起新的行星运行理论;到了伽利略和笛卡儿那里,数学就成了一般的科学方法。
在19世纪,数学应用的成果更为突出:高斯提出行星轨道的计算方法(1809),泊松建立计算电势的微分方程(1811)和理想气体的状态方程(1823),傅立叶利用三角级数研究热传导(1822),麦克斯韦用数学语言表达法拉第的力线概念(1856)并建立电磁理论,预言电磁波的存在(1864),等等。此外,科学与数学的结合产生了一些交叉和边缘学科,如数学物理方程(方法)、生物数学、数学生态学等。
(二)数学(符号)语言的应用 数学是科学的主要术语。数学语言与科学之间的联系,早在古希腊自然哲学中就已经凸显。
“希腊哲学已经发现了一种新的语言——数的语言。这个发现标志着我们近代科学概念的诞生”。
在现代,把数学“看成一种新的强有力的符号体系,对一切科学的目的来说,这种符号体系比言语的符号体系具有无比的优越性”〔1〕。享有“近代自然科学之父”尊称的伽利略也认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如果不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。
比如,当代物理学的基本规律——牛顿力学的运动规律,牛顿万有引力定律,电磁场原理,热力学第一、第二定律,统计力学原理,狭义相对论原理,广义相对论原理,量子力学定律,电子的相对论波动原理,规范场论等的表述,如果没有数学语言,是不可想像的。(三)数学思想方法的应用 数学计算、数学证明、数学模型等方法对科学的产生起着至关重要的作用。
比如,计算是各门科学(技术)中最为重要的方法之一,1846年勒维耶通过计算预见海王星,在科学史上传为佳话。在现代科学中,由于数学思想方法的广泛应用,从而产生了大量与计算有关的边缘科学和交叉科学,如计算力学、计算流体力学、计算结构力学、计算物理学、计算化学、计算生物学、计算胚胎学、计算地质学、计算地震学、数值气象学等。
(四)数学思维方式的应用 诸如符号化、数学化、抽象化、公理化、结构化、逻辑分析、推理计算、从数据进行推断、优化等数学思维方式在科学理论的建构和发展中起着非常重要的作用。比如,牛顿的《自然哲学的数学原理》、拉格朗日的《解析力学》、克劳修斯的《热的机械运动理论》等科学史上的奠基性的著作都是运用公理化的方式写成的。
又如生物学的发展,起初,它“不得不像其他自然科学一样,从对事实的简单分类开始……”,其后逐渐“进展到了一个‘演绎公式化理论’的新阶段”。〔2〕 二、数学教育的科学素养价值 数学教育的科学素养价值,是指数学教育对形成人的科学素养(如科学意识,科学思想、方法,科学精神,科学态度,科学品质)的意义和作用。
数学教育之所以具有这种价值,是因为数学仍保留着科学的许多特性,如“都具有对可以理解的规则的信念;想像力和严格逻辑的相互影响;诚实与公开的思想;同行评论的极端重要性;第一个取得重。
7.数学教育的价值包括哪些方面
数学教育的科学价值主要包括数学的科学价值、数学教育的科学素养价值。
一、数学的科学价值
数学对于科学的价值,表现在诸如物理、化学、生物、天文等学科的产生和发展的许多方面。如果从数学的要素来看,具体表现在以下四个方面。
1、数学知识的应用
科学与数学的结合产生了一些交叉和边缘学科,如数学物理方程(方法)、生物数学、数学生态学等。
2、数学(符号)语言的应用
数学是科学的主要术语。比如,当代物理学的基本规律–牛顿力学的运动规律,牛顿万有引力定律,电磁场原理,热力学第一、第二定律,统计力学原理,狭义相对论原理,广义相对论原理,量子力学定律,电子的相对论波动原理,规范场论等的表述。
3、数学思想方法的应用
在现代科学中,由于数学思想方法的广泛应用,从而产生了大量与计算有关的边缘科学和交叉科学,如计算力学、计算流体力学、计算结构力学、计算物理学、计算化学、计算生物学、计算胚胎学、计算地质学、计算地震学、数值气象学等。
4、数学思维方式的应用
诸如符号化、数学化、抽象化、公理化、结构化、逻辑分析、推理计算、从数据进行推断、优化等数学思维方式在科学理论的建构和发展中起着非常重要的作用。
二、数学教育的科学素养价值
数学教育的科学素养价值,是指数学教育对形成人的科学素养(如科学意识,科学思想、方法,科学精神,科学态度,科学品质)的意义和作用。具体说来,它有如下几个特性。
1、数学中的科学特性
“世界是可被认识的”的科学观,科学的“真、善、美”的本质观,科学理论评价的“外部的确认”与“内部的完美”两条标准,科学知识的发展性和不确定性,科学探索中的“观察”“实验”“验证”“证据”,科学的解释和预测功能等诸多的科学特性,也无不都是数学的特性。
2、数学中的科学思想方法
无论是实证方法、理性方法、臻美方法,还是科学发现中的类比推理、合情推理、直觉和灵感,无不与数学的发现方法和模式完全相同和一致。
3、数学中的科学精神
数学体现的科学精神有:求真、求实、客观的精神,合理怀疑、批判、创新的精神,民主、平等、合作的精神,不断探索、顽强执著、锲而不舍的精神,等等。
4、数学的科学应用
数学的产生和发展同其他科学一样,来自于问题。这里的问题一般可分为实际问题和理论问题两类。科学所研究的自然界无疑是实际问题的源泉,如作为世界上发展最早、历史最长的天文学之一的中国古代天文学,它所研究的历法编算和天象观测与数学就有着密切的联系。