二次函数的综合应用知识点

1.二次函数相关知识点全概括

二次函数 定义与定义表达式编辑本段 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 二次函数的三种表达式编辑本段 ①一般式:y=ax2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1 2)(x-x22) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax2+bx+c,其顶点坐标为[(-b/2a),(4ac-b2)/4a],即 h=-b/2a=(x1 +x2)/2 k=(4ac-b2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b2_4ac)]/2a(即一元二次方程求根公式) 二次函数的图像编辑本段 在平面直角坐标系中作出二次函数y=x2的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。

抛物线的性质编辑本段 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ([-b/2a ,(4ac-b2)/4a ] 当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线开口向上;当a |a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,若要b/2a大于0,则a、b要同号 当a与b异号时(即ab 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b2-4ac>0时,抛物线与x轴有2个交点。 Δ= b2-4ac=0时,抛物线与x轴有1个交点。

Δ= b2-4ac 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,+∞);②[t,+∞) 奇偶性:偶函数 周期性:无 解析式: ①y=ax2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a ⑶极值点:(-b/2a,(4ac-b2)/4a); ⑷Δ=b2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ ②y=a(x-h)2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a; 二次函数与一元二次方程编辑本段 特别地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 y=ax2+K y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c 顶点坐标 (0,0) (0,K) (h,0) (h,k) (-b/2a,[4ac-b2]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k0时,开口向上,当a0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1| 另外,抛物线上任何一对对称点的距离可以由|2*(-b/2a)-A |(A为其中一点的横坐标) 当△=0。.。

2.有关二次函数的知识点

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.2. 二次函数 的结构特征:⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项.二、二次函数的基本形式1. 二次函数基本形式: 的性质:a 的绝对值越大,抛物线的开口越小. 的符号开口方向顶点坐标对称轴性质向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .2. 的性质:上加下减. 的符号开口方向顶点坐标对称轴性质向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .3. 的性质:左加右减. 的符号开口方向顶点坐标对称轴性质向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .4. 的性质: 的符号开口方向顶点坐标对称轴性质向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ;⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴ 沿 轴平移:向上(下)平移 个单位, 变成 (或 )⑵ 沿轴平移:向左(右)平移 个单位, 变成 (或 )四、二次函数 与 的比较从解析式上看, 与 是两种不同的表达形式,后者通过配方可以得到前者,即 ,其中 .五、二次函数 图象的画法五点绘图法:利用配方法将二次函数 化为顶点式 ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 轴的交点 、以及 关于对称轴对称的点 、与 轴的交点 , (若与 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.六、二次函数 的性质 1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 .当 时, 随 的增大而减小;当 时, 随 的增大而增大;当 时, 有最小值 . 2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 .当 时, 随 的增大而增大;当 时, 随 的增大而减小;当 时, 有最大值 .七、二次函数解析式的表示方法1. 一般式: ( , , 为常数, );2. 顶点式: ( , , 为常数, );3. 两根式: ( , , 是抛物线与 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数 二次函数 中, 作为二次项系数,显然 . ⑴ 当 时,抛物线开口向上, 的值越大,开口越小,反之 的值越小,开口越大; ⑵ 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越大.总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向, 的大小决定开口的大小.2. 一次项系数 在二次项系数 确定的前提下, 决定了抛物线的对称轴. ⑴ 在 的前提下,当 时, ,即抛物线的对称轴在 轴左侧;当 时, ,即抛物线的对称轴就是 轴;当 时, ,即抛物线对称轴在 轴的右侧.⑵ 在 的前提下,结论刚好与上述相反,即当 时, ,即抛物线的对称轴在 轴右侧;当 时, ,即抛物线的对称轴就是 轴;当 时, ,即抛物线对称轴在 轴的左侧.总结起来,在 确定的前提下, 决定了抛物线对称轴的位置. 的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧则 ,概括的说就是“左同右异”总结: 3. 常数项 ⑴ 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正; ⑵ 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ; ⑶ 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为负. 总结起来, 决定了抛物线与 轴交点的位置. 总之,只要 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于 轴对称 关于 轴对称后,得到的解析式是 ; 关于 轴对称后,。

3.二次函数相关知识点全概括

二次函数 定义与定义表达式编辑本段 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 二次函数的三种表达式编辑本段 ①一般式:y=ax2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1 2)(x-x22) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax2+bx+c,其顶点坐标为[(-b/2a),(4ac-b2)/4a],即 h=-b/2a=(x1 +x2)/2 k=(4ac-b2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b2_4ac)]/2a(即一元二次方程求根公式) 二次函数的图像编辑本段 在平面直角坐标系中作出二次函数y=x2的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。

抛物线的性质编辑本段 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ([-b/2a ,(4ac-b2)/4a ] 当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线开口向上;当a |a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,若要b/2a大于0,则a、b要同号 当a与b异号时(即ab 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b2-4ac>0时,抛物线与x轴有2个交点。 Δ= b2-4ac=0时,抛物线与x轴有1个交点。

Δ= b2-4ac 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,+∞);②[t,+∞) 奇偶性:偶函数 周期性:无 解析式: ①y=ax2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a ⑶极值点:(-b/2a,(4ac-b2)/4a); ⑷Δ=b2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ ②y=a(x-h)2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a; 二次函数与一元二次方程编辑本段 特别地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 y=ax2+K y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c 顶点坐标 (0,0) (0,K) (h,0) (h,k) (-b/2a,[4ac-b2]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k0时,开口向上,当a0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1| 另外,抛物线上任何一对对称点的距离可以由|2*(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图。

4.二次函数完整的知识点

定义与定义表达式 我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项。

一般的,形如y=ax^2+bx+c(a≠0)的函数叫二次函数。自变量(通常为x)和因变量(通常为y)。

右边是整式,且自变量的最高次数是2。 注意,“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。

未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别。二次函数的解法 二次函数的通式是 y= ax^2+bx+c如果知道三个点 将三个点的坐标带入也就是说三个方程解三个未知数 如题方程一8=a2+b2+c 化简 8=c 也就是说c就是函数与Y轴的交点。

方程二7=a*36+b*6+c 化简 7=36a+6b+c。 方程三7=a*(-6)2+b*(-6)+c化简 7=36a-6b+c。

解出a,b,c 就可以了 。 上边这种是老老实实的解法 。

对(6,7)(-6,7)这两个坐标 可以求出一个对称轴也就是X=0 。 通过对称轴公式x=-b/2a 也可以算 。

如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算 。 或者使用韦达定理一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 。

设两个根为X1和X2 则X1+X2= -b/a X1·X2=c/a一般式 y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b^2;/4a)顶点式 y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式交点式 y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] 由一般式变为交点式的步骤:二次函数(16张) ∵X1+x2=-b/a x1·x2=c/a ∴y=ax^2+bx+c =a(x^2+b/ax+c/a) =a[﹙x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。

a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式) y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1·x2)(y1为截距) 求根公式二次函数表达式的右边通常为二次三项式。

求根公式 x是自变量,y是x的二次函数 x1,x2=[-b±(√(b^2-4ac)]/2a (即一元二次方程求根公式)(如右图) 求根的方法还有因式分解法和配方法 二次函数与X轴交点的情况 当△=b^2-4ac>0时, 函数图像与x轴有两个交点。 当△=b^2-4ac=0时,函数图像与x轴有一个交点。

当△=b^2-4ac<0时,函数图像与x轴没有交点。编辑本段图像 在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。

如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。 注意:草图要有 1本身图像,旁边注明函数。

2画出对称轴,并注明直线X=什么 (X= -b/2a) 3与X轴交点坐标 (x1,y1);(x2, y2),与Y轴交点坐标(0,c),顶点坐标(-b/2a, (4ac-bx²/4a).轴对称 1.二次函数图像是轴对称图形。对称轴为直线x = h或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。

特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0) a,b同号,对称轴在y轴左侧 b=0,对称轴是y轴 a,b异号,对称轴在y轴右侧顶点 2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2;+k h=-b/2a k=(4ac-b^2)/4a开口 3.二次项系数a决定二次函数图像的开口方向和大小。

当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。

决定对称轴位置的因素 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a0,与b异号时(即ab<0),对称轴在y轴右。

因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为同左异右,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的 斜率k的值。

可通过对二次函数求导得到。决定二次函数图像与y轴交点的因素 5.常数项c决定二次函数图像与y轴交点。

二次函数图像与y轴交于(0,C) 注意:顶点坐标为(h,k) 与y轴交于(0,C)二次函数图。

5.二次函数的知识点

1.定义:2.二次函数 的性质(1)抛物线 y=ax^2 的顶点是坐标原点,对称轴是 y轴.(2)函数 的图像与 a的符号关系.①当 a>0时 抛物线开口向上 顶点为其最低点;②当 a0 时,开口向上;当a0 抛物线与 x轴相交;②有一个交点(顶点在 x轴上) 抛物线与 x轴相切;③没有交点 抛物线与x 轴相离.(4)一次函数 的图像 与二次函数 的图像 的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时 与 有两个交点; ②方程组只有一组解时 与 只有一个交点;③方程组无解时 与 没有交点.13.二次函数与一元二次方程的关系:(1)一元二次方程 就是二次函数 当函数y的值为0时的情况.(2)二次函数 的图象与 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数 的图象与 轴有交点时,交点的横坐标就是当 时自变量 的值,即一元二次方程 的根.(3)当二次函数 的图象与 轴有两个交点时,则一元二次方程 有两个不相等的实数根;当二次函数 的图象与 轴有一个交点时,则一元二次方程 有两个相等的实数根;当二次函数 的图象与 轴没有交点时,则一元二次方程 没有实数根14.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.。

6.关于二次函数的知识概括

讲主要的几点:

1.结合图形的来理解. 就是一条抛物线.

2.掌握对称轴,顶点,开口方向这几个概念

3.根据曲线掌握最大最小值,单调性.离对称轴越近则函数值越大(或越小).

4.根据代数式掌握配方法,以及由此得到的顶点,极值,单调性质.

5.掌握零点的性质,根与系数的关系,零点关于对称轴对称.判别式的实质.

6.掌握区间若只有一个零点,则端点函数值符号相反.若有两个零点,则端点值同号,且极值在区间内.

%title插图%num